【題目】某文教店老板到批發(fā)市場選購A,B兩種品牌的繪圖工具套裝,每套A品牌套裝進(jìn)價比B品牌每套套裝進(jìn)價多2.5元,已知用200元購進(jìn)A種套裝的數(shù)量是用75元購進(jìn)B種套裝數(shù)量的2倍.
(1)求A,B兩種品牌套裝每套進(jìn)價分別為多少元?
(2)若A品牌套裝每套售價為13元,B品牌套裝每套售價為9.5元,店老板決定,購進(jìn)B品牌的數(shù)量比購進(jìn)A品牌的數(shù)量的2倍還多4套,兩種工具套裝全部售出后,要使總的獲利超過120元,則最少購進(jìn)A品牌工具套裝多少套?

【答案】
(1)解:設(shè)B種品牌套裝每套進(jìn)價為x元,則A種品牌套裝每套進(jìn)價為(x+2.5)元.

根據(jù)題意得: =2× ,

解得:x=7.5,

經(jīng)檢驗(yàn),x=7.5為分式方程的解,

∴x+2.5=10.

答:A種品牌套裝每套進(jìn)價為10元,B種品牌套裝每套進(jìn)價為7.5元.


(2)解:設(shè)購進(jìn)A品牌工具套裝a套,則購進(jìn)B品牌工具套裝(2a+4)套,

根據(jù)題意得:(13﹣10)a+(9.5﹣7.5)(2a+4)>120,

解得:a>16,

∵a為正整數(shù),

∴a取最小值17.

答:最少購進(jìn)A品牌工具套裝17套.


【解析】(1)此題的等量關(guān)系是:每套A品牌套裝進(jìn)價=B品牌每套套裝進(jìn)價+2.5,已知用200元購進(jìn)A種套裝的數(shù)量=用75元購進(jìn)B種套裝數(shù)量的2倍,設(shè)未知數(shù),建立方程求解。
(2)挖掘題中的等量關(guān)系是:購進(jìn)B品牌的數(shù)量=購進(jìn)A品牌的數(shù)量的2倍+4;不等關(guān)系是:兩種工具套裝全部售出后,要使總的獲利>120,建立不等式求解,再求出不等式的最小整數(shù)解即可。
【考點(diǎn)精析】掌握分式方程的應(yīng)用是解答本題的根本,需要知道列分式方程解應(yīng)用題的步驟:審題、設(shè)未知數(shù)、找相等關(guān)系列方程、解方程并驗(yàn)根、寫出答案(要有單位).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B,C分別是⊙O上的點(diǎn),∠B=60°,AC=3,CD是⊙O的直徑,P是CD延長線上的一點(diǎn),且AP=AC.

(1)求證:AP是⊙O的切線;
(2)求PD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC向右平移3個單位長度,再向上平移2個單位長度,可以得到.

(1)畫出平移后的;

(2)寫出三個頂點(diǎn)的坐標(biāo);

(3)已知點(diǎn)Px軸上,、、P為頂點(diǎn)的三角形面積為4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某小區(qū)實(shí)施供暖改造工程,現(xiàn)甲、乙兩工程隊分別同時開挖兩條600米長的管道,所挖管道長度y(米)與挖掘時間x(天)之間的關(guān)系如圖所示,則下列說法中,正確的個數(shù)有( )個.
①甲隊每天挖100米;
②乙隊開挖兩天后,每天挖50米;
③當(dāng)x=4時,甲、乙兩隊所挖管道長度相同;
④甲隊比乙隊提前2天完成任務(wù).

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算題

1

2)(15x4y212x2y33x2÷(3x2)

3

4)〔(x+y)2(xy) 2÷2xy

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=(x﹣1)2+k分別與x軸、y軸交于A、B、C三點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè),直線y=﹣ x+2經(jīng)過點(diǎn)B,且與y軸交于點(diǎn)D.
(1)如圖1,求k的值;

(2)如圖2,在第一象限的拋物線上有一動點(diǎn)P,連接AP,過P作PE⊥x軸于點(diǎn)E,過E作EF⊥AP于點(diǎn)F,過點(diǎn)D作平行于x軸的直線分別與直線FE、PE交于點(diǎn)G、H,設(shè)點(diǎn)P的橫坐標(biāo)為t,線段GH的長為d,求d與t的函數(shù)關(guān)系式,并直接寫出t的取值范圍;

(3)在(2)的條件下,過點(diǎn)G作平行于y軸的直線分別交AP、x軸和拋物線于點(diǎn)M、T和N,tan∠MEA= ,點(diǎn)K為第四象限拋物線上一點(diǎn),且在對稱軸左側(cè),連接KA,在射線KA上取一點(diǎn)R,連接RM,過點(diǎn)K作KQ⊥AK交PE的延長線于Q,連接AQ、HK,若∠RAE﹣∠RMA=45°,△AKQ與△HKQ的面積相等,求點(diǎn)R的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場推出A、B、C三種特價玩具,若購買A2件、B1件、C3件,共需24元;若購買A3件、B4件、C2件,共需36元.那么小明購買A1件、B1件、C1件,共需付款( 。

A.11B.12C.13D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸交于A,B與y軸交于C,過C作x軸的平行線交拋物線于點(diǎn)D,過點(diǎn)D作x軸的垂線交x軸于E,點(diǎn)D的坐標(biāo)為(2,3)

(1)求拋物線的解析式;
(2)點(diǎn)P為第一象限直線DE右側(cè)拋物線上一點(diǎn),連接AP交y軸于點(diǎn)F,連接PD、DF,設(shè)點(diǎn)P的橫坐標(biāo)為t,△PFD的面積為S,求S與t的函數(shù)關(guān)系式;
(3)在(2)的條件下,點(diǎn)P向下平移3個單位得到點(diǎn)Q,連接AQ、EQ,若∠AQE=45°,求點(diǎn)P的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ACBECD都是等腰直角三角形,ACB=∠ECD=90°,DAB邊上一點(diǎn).

求證:(1)△ACE≌△BCD;(2

查看答案和解析>>

同步練習(xí)冊答案