【題目】如圖,BC是半⊙O的直徑,點(diǎn)P是半圓弧的中點(diǎn),點(diǎn)A是弧BP的中點(diǎn),ADBCD,連結(jié)ABPB、ACBP分別與AD、AC相交于點(diǎn)E、F

1)求證:AE=BE

2)判斷BEEF是否相等嗎,并說明理由;

3)小李通過操作發(fā)現(xiàn)CF=2AB,請(qǐng)問小李的發(fā)現(xiàn)是否正確?若正確,請(qǐng)說明理由;若不正確,請(qǐng)寫出CFAB正確的關(guān)系式.

【答案】1)見解析;(2BE=EF,理由見解析;(3)小李的發(fā)現(xiàn)是正確的,理由見解析

【解析】

1)如圖1,連接AP,由BC是半⊙O的直徑,ADBCD,得到∠ACB+ABC=BAD+ABD=90°,于是得到∠ACB=BAD,根據(jù)圓周角定理得到∠P=ACB=ABP,即可求出結(jié)論;

2)根據(jù)圓周角定理求出∠ABE=BAE,求出AE=BE,求出∠CAD=AFB,求出AE=EF,即可得出答案;

3)根據(jù)全等三角形的性質(zhì)和判定求出BG=CF,AB=AG,即可得出答案.

1)如圖1,連接AP,

BC是半⊙O的直徑,

∴∠BAC=90°,

ADBCD,

∴∠ADB=90°,

∴∠ACB+ABC=BAD+ABD=90°

∴∠ACB=BAD,

∵點(diǎn)A是弧BP的中點(diǎn),

∴∠P=ACB=ABP,

∴∠ABE=BAE,

AE=BE;

2BE=EF,

理由是:∵BC是直徑,ADBC,

∴∠BAC=ADC=90°,

∴∠BAD=ACB,

A為弧BP中點(diǎn),

∴∠ABP=ACB,

∴∠BAD=ABP,

BE=AE,∠FAD=AFB,

EF=AE

BE=EF;

3)小李的發(fā)現(xiàn)是正確的,

理由是:如圖2,延長BACP,兩線交于G,

P為半圓弧的中點(diǎn),A是弧BP的中點(diǎn),

∴∠PCF=GBP,∠CPF=BPG=90°,BP=PC,

PCFPBG中,

,

∴△PCF≌△PBGASA),

CF=BG

BC為直徑,

∴∠BAC=90°,

A為弧BP中點(diǎn),

∴∠GCA=BCA,

BACGAC中,

∴△BAC≌△GACASA),

AG=AB=BG

CF=2AB

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦DE垂直平分半徑OAC為垂足,弦DF與半徑OB相交于點(diǎn)P,連接EF、EO,若DE2,∠DPA45°.則圖中陰影部分的面積為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax+bx+c(a≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:①abc0;b-ac:③4a+2b+c0;3a-c;⑤a+bm(am+b)(m≠1的實(shí)數(shù)).其中結(jié)論正確的有( )

A. ①②③

B. ②③⑤

C. ②③④

D. ③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)的圖象與函數(shù))的圖象交于點(diǎn)A21)、B,與y軸交于點(diǎn)C0,3).

1)求函數(shù)的表達(dá)式和點(diǎn)B的坐標(biāo);

2)觀察圖象,比較當(dāng)x0時(shí)的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每位同學(xué)都能感受到日出時(shí)美麗的景色.下圖是一位同學(xué)從照片上剪切下來的畫面,圖上太陽與海平線交于A﹑B兩點(diǎn),他測(cè)得圖上圓的半徑為5厘米,AB=8厘米,若從目前太陽所處位置到太陽完全跳出海面的時(shí)間為16分鐘,求圖上太陽升起的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在斜坡的頂部有一鐵塔AB,BCD的中點(diǎn),CD是水平的,在陽光的照射下,塔影DE留在坡面上.已知CD20m,DE30m,小明和小華的身高都是1.5m,同一時(shí)刻,小明站在E處,影子落在坡面上,影長為2m,小華站在平地上,影子也落在平地上,影長為1m,則塔高AB_____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線yax2+bx+c經(jīng)過A(﹣6,0)、B(2,0)、C(0,6)三點(diǎn),其頂點(diǎn)為D,連接AD,點(diǎn)P是線段AD上一個(gè)動(dòng)點(diǎn)(不與A、D重合),過點(diǎn)Py軸的垂線,垂足為點(diǎn)E,連接AE

(1)求拋物線的函數(shù)解析式,并寫出頂點(diǎn)D的坐標(biāo);

(2)如果點(diǎn)P的坐標(biāo)為(x,y),PAE的面積為S,求Sx之間的函數(shù)關(guān)系式,直接寫出自變量x的取值范圍,并求出S的最大值;

(3)過點(diǎn)P(﹣3,m)作x軸的垂線,垂足為點(diǎn)F,連接EF,把PEF沿直線EF折疊,點(diǎn)P的對(duì)應(yīng)點(diǎn)為點(diǎn)P,求出P的坐標(biāo).(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解全校學(xué)生對(duì)電視節(jié)目的喜愛情況(新聞、體育、動(dòng)畫、娛樂、戲曲),從全校學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,并把調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)根據(jù)以上信息,解答下列問題:

(1)這次被調(diào)查的學(xué)生共有多少人?

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)若該校約有1500名學(xué)生,估計(jì)全校學(xué)生中喜歡娛樂節(jié)目的有多少人?

(4)該校廣播站需要廣播員,現(xiàn)決定從喜歡新聞節(jié)目的甲、乙、丙、丁四名同學(xué)中選取2,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為R的圓內(nèi),ABCDEF是正六邊形,EFGH是正方形.

(1)求正六邊形與正方形的面積比;(2)連接OF,OG,求∠OGF.

查看答案和解析>>

同步練習(xí)冊(cè)答案