【題目】如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,弦DF與半徑OB相交于點P,連接EF、EO,若DE=2,∠DPA=45°.則圖中陰影部分的面積為____.
【答案】π﹣2.
【解析】
根據(jù)垂徑定理得CE的長,再根據(jù)已知DE平分AO得CO=AO=OE,解直角三角形求解.在求出扇形的圓心角,再根據(jù)扇形面積和三角形的面積公式計算即可
連接OF.
∵直徑AB⊥DE,
∴CE=DE=.
∵DE平分AO,
∴CO=AO=OE.
又∵∠OCE=90°,
∴sin∠CEO==,
∴∠CEO=30°.
在Rt△COE中,
OE==2.
∴⊙O的半徑為2.
在Rt△DCP中,
∵∠DPC=45°,
∴∠D=90°﹣45°=45°.
∴∠EOF=2∠D=90°.
∴S扇形OEF=×π×22=π.
∵∠EOF=2∠D=90°,OE=OF=2,
∴SRt△OEF=×OE×OF=2.
∴S陰影=S扇形OEF﹣SRt△OEF=π﹣2.
故答案為:π﹣2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,E是BC邊的中點,點P在射線AD上,過P作PF⊥AE于F,設(shè)PA=x。
(1)求證:△PFA∽△ABE;
(2)若以P,F(xiàn),E為頂點的三角形也與△ABE相似,試求x的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是⊙O的內(nèi)接三角形,∠BAC的平分線交⊙O于點D.
(I)如圖①,若BC是⊙O的直徑,BC=4,求BD的長;
(Ⅱ)如圖②,若∠ABC的平分線交AD于點E,求證:DE=DB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明研究了這樣一道幾何題:如圖1,在中,把繞點順時針旋轉(zhuǎn)得到,把繞點逆時針旋轉(zhuǎn)得到,連接.當(dāng)時,請問邊上的中線與的數(shù)量關(guān)系是什么?以下是他的研究過程:
特例驗證:(1)①如圖2,當(dāng)為等邊三角形時,猜想與的數(shù)量關(guān)系為_______;②如圖3,當(dāng),時,則長為________.
猜想論證:(2)在圖1中,當(dāng)為任意三角形時,猜想與的數(shù)量關(guān)系,并給予證明.
拓展應(yīng)用:(3)如圖4,在四邊形,,,,,,在四邊形內(nèi)部是否存在點,使與之間滿足小明探究的問題中的邊角關(guān)系?若存在,請畫出點的位置(保留作圖痕跡,不需要說明)并直接寫出的邊上的中線的長度;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷某校數(shù)學(xué)興趣小組設(shè)計了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:
(1)這次統(tǒng)計共抽查了多少名學(xué)生?在扇形統(tǒng)計圖中,表示" "的扇形圓心角的度數(shù)是多少;
(2)將條形統(tǒng)計圖補(bǔ)充完整;
(3)該校共有1500名學(xué)生,請估計該校最喜歡用 “微信”進(jìn)行溝通的學(xué)生大約有多少名?
(4)某天甲、乙兩名同學(xué)都想從“微信"、""、“電話"三種溝通方式中選一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲、乙兩名同學(xué)恰好選擇同一種溝通方式的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y1=3x﹣5與反比例函數(shù)y2=的圖象相交A(2,m),B(n,﹣6)兩點,連接OA,OB.
(1)求k和n的值;
(2)求△AOB的面積;
(3)直接寫出y1> y2時自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲、乙只捕撈船同時從A港出海捕魚,甲船以每小時15 km的速度沿北偏西60°方向前進(jìn),乙船以每小時15 km的速度沿東北方向前進(jìn).甲船航行2 h到達(dá)C處,此時甲船發(fā)現(xiàn)漁具丟在了乙船上,于是甲船快速(勻速)沿北偏東75°的方向追趕乙船,結(jié)果兩船在B處相遇.問:
(1)甲船從C處出發(fā)追趕上乙船用了多少時間?
(2)甲船追趕乙船的速度是每小時多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點在邊上,點為邊上一動點,連接與關(guān)于所在直線對稱,點分別為的中點,連接并延長交所在直線于點,連接.當(dāng)為直角三角形時,的長為_________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖像經(jīng)過的三個頂點,其中,
(1)求點的坐標(biāo);
(2)在第三象限存在點,使以為頂點的四邊形是平行四邊形,求滿足條件的點的坐標(biāo);
(3)在(2)的條件下,能否將拋物線平移后經(jīng)過兩點,若能求出平移后經(jīng)過兩點的拋物線的表達(dá)式,并寫出平移過程.若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com