【題目】某校計(jì)劃組織240名師生到紅色教育基地開展革命傳統(tǒng)教育活動.旅游公司有A,B兩種客車可供租用,A型客車每輛載客量45人,B型客車每輛載客量30人.若租用4輛A型客車和3輛B型客車共需費(fèi)用10700元;若租用3輛A型客車和4輛B型客車共需費(fèi)用10300元.
(1)求租用A,B兩型客車,每輛費(fèi)用分別是多少元;
(2)為使240名師生有車坐,且租車總費(fèi)用不超過1萬元,你有哪幾種租車方案?哪種方案最省錢?
【答案】(1)租用A,B兩型客車,每輛費(fèi)用分別是1700元、1300元;(2)共有三種租車方案,方案一:租用A型客車2輛,B型客車5輛,費(fèi)用為9900元,方案二:租用A型客車4輛,B型客車2輛,費(fèi)用為9400元,方案三:租用A型客車5輛,B型客車1輛,費(fèi)用為9800元,方案二:租用A型客車4輛,B型客車2輛最省錢.
【解析】
(1)根據(jù)題意可以列出相應(yīng)的方程組,從而可以求得租用A,B兩型客車,每輛的費(fèi)用;
(2)根據(jù)題意可以列出相應(yīng)的不等式,從而可以得到有哪幾種租車方案和最省錢的方案.
(1)設(shè)租用A,B兩型客車,每輛費(fèi)用分別是x元、y元,
,
解得,,
答:租用A,B兩型客車,每輛費(fèi)用分別是1700元、1300元;
(2)設(shè)租用A型客車a輛,租用B型客車b輛,
,
解得,,,,
∴共有三種租車方案,
方案一:租用A型客車2輛,B型客車5輛,費(fèi)用為9900元,
方案二:租用A型客車4輛,B型客車2輛,費(fèi)用為9400元,
方案三:租用A型客車5輛,B型客車1輛,費(fèi)用為9800元,
由上可得,方案二:租用A型客車4輛,B型客車2輛最省錢.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AB=6,BC=10,AB⊥AC,點(diǎn)P從點(diǎn)B出發(fā)沿著B→A→C的路徑運(yùn)動,同時點(diǎn)Q從點(diǎn)A出發(fā)沿著A→C→D的路徑以相同的速度運(yùn)動,當(dāng)點(diǎn)P到達(dá)點(diǎn)C時,點(diǎn)Q隨之停止運(yùn)動,設(shè)點(diǎn)P運(yùn)動的路程為x,y=PQ2,下列圖象中大致反映y與x之間的函數(shù)關(guān)系的是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC,DC是⊙O的兩條弦,點(diǎn)P在AB的延長線上.已知,∠ACD=60°,∠APD=30°
(1)求證:PD是⊙O的切線;
(2)若AB=4,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知為銳角內(nèi)部一點(diǎn),過點(diǎn)作于點(diǎn),于點(diǎn),以為直徑作,交直線于點(diǎn),連接,交于點(diǎn).
(1)求證:.
(2)連接,當(dāng),時,在點(diǎn)的整個運(yùn)動過程中.
①若,求的長.
②若為等腰三角形,求所有滿足條件的的長.
(3)連接,交于點(diǎn),當(dāng),時,記的面積為,的面積為,請寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD在第一象限內(nèi),邊BC與x軸平行,A,B兩點(diǎn)的縱坐標(biāo)分別為4,2,反比例函數(shù)y(x>0)的圖象經(jīng)過A,B兩點(diǎn),若菱形ABCD的面積為2,則k的值為( )
A. 2B. 3C. 4D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義一種新函數(shù):形如(,且)的函數(shù)叫做“鵲橋”函數(shù).小麗同學(xué)畫出了“鵲橋”函數(shù)y=|x2-2x-3|的圖象(如圖所示),并寫出下列五個結(jié)論:①圖象與坐標(biāo)軸的交點(diǎn)為,和;②圖象具有對稱性,對稱軸是直線;③當(dāng)或時,函數(shù)值隨值的增大而增大;④當(dāng)或時,函數(shù)的最小值是0;⑤當(dāng)時,函數(shù)的最大值是4.其中正確結(jié)論的個數(shù)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“綠水青山就是金山銀山”,為保護(hù)生態(tài)環(huán)境,A,B兩村準(zhǔn)備各自清理所屬區(qū)域養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,每村參加清理人數(shù)及總開支如下表:
村莊 | 清理養(yǎng)魚網(wǎng)箱人數(shù)/人 | 清理捕魚網(wǎng)箱人數(shù)/人 | 總支出/元 |
A | 15 | 9 | 57000 |
B | 10 | 16 | 68000 |
(1)若兩村清理同類漁具的人均支出費(fèi)用一樣,求清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱的人均支出費(fèi)用各是多少元;
(2)在人均支出費(fèi)用不變的情況下,為節(jié)約開支,兩村準(zhǔn)備抽調(diào)40人共同清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,要使總支出不超過102000元,且清理養(yǎng)魚網(wǎng)箱人數(shù)小于清理捕魚網(wǎng)箱人數(shù),則有哪幾種分配清理人員方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在矩形ABCD中,對角線AC與BD相交于點(diǎn)O,過點(diǎn)O作直線EF⊥BD,且交AD于點(diǎn)E,交BC于點(diǎn)F,連接BE,DF,且BE平分∠ABD.
①求證:四邊形BFDE是菱形;
②直接寫出∠EBF的度數(shù).
(2)把(1)中菱形BFDE進(jìn)行分離研究,如圖2,G,I分別在BF,BE邊上,且BG=BI,連接GD,H為GD的中點(diǎn),連接FH,并延長FH交ED于點(diǎn)J,連接IJ,IH,IF,IG.試探究線段IH與FH之間滿足的關(guān)系,并說明理由;
(3)把(1)中矩形ABCD進(jìn)行特殊化探究,如圖3,矩形ABCD滿足AB=AD時,點(diǎn)E是對角線AC上一點(diǎn),連接DE,作EF⊥DE,垂足為點(diǎn)E,交AB于點(diǎn)F,連接DF,交AC于點(diǎn)G.請直接寫出線段AG,GE,EC三者之間滿足的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在菱形ABCD中,動點(diǎn)P從點(diǎn)B出發(fā),沿折線B→C→D→B運(yùn)動.設(shè)點(diǎn)P經(jīng)過的路程為x,△ABP的面積為y.把y看作x的函數(shù),函數(shù)的圖象如圖②所示,則圖②中的b等于( 。
A. B. C. 5D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com