【題目】若等腰三角形一腰上的中線分周長(zhǎng)為6cm或9cm兩部分,求這個(gè)等腰三角形的底邊和腰的長(zhǎng).

【答案】解:設(shè)等腰三角形的腰長(zhǎng)、底邊長(zhǎng)分別為x cm,y cm, 依題意得
解得
故這個(gè)等腰三角形的腰長(zhǎng)為6 cm,底邊長(zhǎng)為3 cm,
或腰長(zhǎng)為4 cm,底邊長(zhǎng)為7 cm
【解析】設(shè)腰長(zhǎng)為x,底邊長(zhǎng)為y,根據(jù)等腰三角形一腰上的中線將這個(gè)等腰三角形的周長(zhǎng)分為6cm或9cm兩部分,列方程解得即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解三角形三邊關(guān)系的相關(guān)知識(shí),掌握三角形兩邊之和大于第三邊;三角形兩邊之差小于第三邊;不符合定理的三條線段,不能組成三角形的三邊,以及對(duì)等腰三角形的性質(zhì)的理解,了解等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱:等邊對(duì)等角).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=x2+2x+m的圖象過(guò)點(diǎn)A(3,0).
(1)求m的值;
(2)當(dāng)x取何值時(shí),函數(shù)值y隨x的增大而增大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)x,y定義了一種新運(yùn)算T,規(guī)定T(x,y)= (其中a,b均為非零常數(shù)),這里等式右邊是通常的四則運(yùn)算,例如:T(0,1)= ,已知T(1,﹣1)=﹣2,T(4,2)=1.
(1)求a,b的值;
(2)若關(guān)于m的不等式組 恰好有3個(gè)整數(shù)解,求p的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線y=﹣x+4與兩坐標(biāo)軸分別相交于點(diǎn)A,B兩點(diǎn),點(diǎn)C是線段AB上任意一點(diǎn),過(guò)C分別作CD⊥x軸于點(diǎn)D,CE⊥y軸于點(diǎn)E.雙曲線 與CD,CE分別交于點(diǎn)P,Q兩點(diǎn),若四邊形ODCE為正方形,且 ,則k的值是( )

A.4
B.2
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將△ABC沿著過(guò)AB中點(diǎn)D的直線折疊,使點(diǎn)A落在BC邊上的A2處,稱為第1次操作,折痕DE到BC的距離記為h1;還原紙片后,再將△ADE沿著過(guò)AD中點(diǎn)D1的直線折疊,使點(diǎn)A落在DE邊上的A2處,稱為第2次操作,折痕D1E1到BC的距離記為h2;按上述方法不斷操作下去…,經(jīng)過(guò)第2015次操作后得到的折痕D2014E2014到BC的距離記為h2015,到BC的距離記為h2015.若h1=1,則h2015的值為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列運(yùn)算中,計(jì)算結(jié)果正確的是(  )
A.a2a3=a6
B.(a23=a5
C.(a2b)2=a2b2
D.(﹣a)6÷a=a5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一個(gè)等邊三角形木框,甲蟲(chóng)P在邊框AC上爬行(A,C端點(diǎn)除外),設(shè)甲蟲(chóng)P到另外兩邊的距離之和為d,等邊三角形ABC的高為h,則d與h的大小關(guān)系是(
A.d>h
B.d<h
C.d=h
D.無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司今年元月份利潤(rùn)為500萬(wàn)元,以后兩個(gè)月均勻增長(zhǎng),第一季度的利潤(rùn)1820萬(wàn)元,設(shè)該公司利潤(rùn)月平均增長(zhǎng)率為x,根據(jù)題意可列方程_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,C=90°,AB=15,BC=9,點(diǎn)P,Q分別在BC,AC上,CP=3x,CQ=4x(0<x<3).把PCQ繞點(diǎn)P旋轉(zhuǎn),得到PDE,點(diǎn)D落在線段PQ上.

(1)求證:PQAB;

(2)若點(diǎn)D在BAC的平分線上,求CP的長(zhǎng);

(3)若PDE與ABC重疊部分圖形的周長(zhǎng)為T(mén),且12≤T≤16,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案