如圖,在平面直角坐標系中,將一塊等腰直角三角板ABC斜靠在兩坐標軸上放在第二象限,點C的坐標為(-1,0).B點在拋物線的圖象上,過點B作軸,垂足為D,且B點橫坐標為

(1)求證:
(2)求BC所在直線的函數(shù)關系式;
(3)拋物線的對稱軸上是否存在點P,使 △ACP是以AC為直角邊的直角三角形?若存在,求出點P的坐標;若不存在,請說明理由.

(1)先根據(jù)同角的余角相等證得,又為等腰直角三角形,可得.即可證得結論;(2);(3)

解析試題分析:(1)先根據(jù)同角的余角相等證得,又為等腰直角三角形,可得.即可證得結論;
(2)由C點坐標可得BD=CO=1,即可得到B點坐標 設所在直線的函數(shù)關系式為,根據(jù)待定系數(shù)法即可求得結果;
(3)先求得拋物線的對稱軸為直線.再分以為直角邊,點為直角頂點;以為直角邊,點為直角頂點,兩種情況根據(jù)一次函數(shù)的性質求解即可.
(1)∵,,
.     
為等腰直角三角形,



(AAS).
(2)∵C點坐標為
∴BD=CO=1.
∵B點的橫坐標為,
∴B點坐標為. 
所在直線的函數(shù)關系式為,
則有,解得
∴BC所在直線的函數(shù)關系式為.          
(3)存在.     
=,
∴對稱軸為直線. 
若以為直角邊,點為直角頂點,對稱軸上有一點,使
 
∴點為直線與對稱軸直線的交點.
由題意得,解得

若以為直角邊,點為直角頂點,對稱軸上有一點,使,
過點,交對稱軸直線于點

∵CD=OA,
∴A(0,2).
易求得直線的解析式為,
,∴
∴滿足條件的點有兩個,坐標分別為
考點:二次函數(shù)的綜合題
點評:此類問題綜合性強,難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案