12、觀察下表:則y與x的關系式為
y=x3+1
分析:由上表找出相應的常量即可求出關系式.
解答:解:當x=1時,y=13+1=2;
當x=2時,y=22+1=9;
當x=3時,y=33+1=28;

由此可得出y=x3+1.
點評:仔細分析表中數(shù)據(jù)是解決本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【問題情境】
已知矩形的面積為a(a為常數(shù),a>0),當該矩形的長為多少時,它的周長最?最小值是多少?
【數(shù)學模型】
設該矩形的長為x,周長為y,則y與x的函數(shù)關系式為y=2(x+
a
x
)(x>0).
【探索研究】
(1)我們可以借鑒以前研究函數(shù)的經驗,先探索函數(shù)y=x+
1
x
(x>0)的圖象和性質.精英家教網
①填寫下表,畫出函數(shù)的圖象;
x
1
4
1
3
1
2
1 2 3 4
y              
②觀察圖象,寫出該函數(shù)兩條不同類型的性質;
③在求二次函數(shù)y=ax2+bx+c(a≠0)的最大(。┲禃r,除了通過觀察圖象,還可以通過配方得到.請你通過配方求函數(shù)y=x+
1
x
(x>0)的最小值.

【解決問題】
(2)用上述方法解決“問題情境”中的問題,直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

問題背景:
若矩形的周長為1,則可求出該矩形面積的最大值.我們可以設矩形的一邊長為x,面積為s,則s與x的函數(shù)關系式為:s=-x2+
1
2
x
(x>0),利用函數(shù)的圖象或通過配方均可求得該函數(shù)的最大值.
提出新問題:
若矩形的面積為1,則該矩形的周長有無最大值或最小值?若有,最大(。┲凳嵌嗌伲
分析問題:
若設該矩形的一邊長為x,周長為y,則y與x的函數(shù)關系式為:y=2(x+
1
x
)
(x>0),問題就轉化為研究該函數(shù)的最大(。┲盗耍
解決問題:
借鑒我們已有的研究函數(shù)的經驗,探索函數(shù)y=2(x+
1
x
)
(x>0)的最大(。┲担
(1)實踐操作:填寫下表,并用描點法畫出函數(shù)y=2(x+
1
x
)
(x>0)的圖象:
x 1/4 1/3 1/2 1 2 3 4
y
17
2
20
3
5 4 5
20
3
17
2
(2)觀察猜想:觀察該函數(shù)的圖象,猜想當x=
1
1
時,函數(shù)y=2(x+
1
x
)
(x>0)有最
值(填“大”或“小”),是
4
4

(3)推理論證:問題背景中提到,通過配方可求二次函數(shù)s=-x2+
1
2
x
(x>0)的最大值,請你嘗試通過配方求函數(shù)y=2(x+
1
x
)
(x>0)的最大(。┲担宰C明你的猜想.〔提示:當x>0時,x=(
x
)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

觀察下表:則y與x的關系式為________.
x12345
y292865126

查看答案和解析>>

科目:初中數(shù)學 來源:同步題 題型:填空題

觀察下表:則y與x的關系式為(    )

查看答案和解析>>

同步練習冊答案