【題目】如圖,建筑物AB的高為52米,在其正前方廣場上有人進行航模試飛.從建筑物頂端A處測得航模C的俯角α30°,同一時刻從建筑物的底端B處測得航模C的仰角β45°,求此時航模C的飛行高度.(精確到1)(參考數(shù)據(jù):≈1.41≈1.73,≈2.45)

【答案】此時航模C的飛行高度為33.

【解析】

CDAB,知∠ACD30°,∠BCD45°,設ADx,可得CDx,由BDCDx,結(jié)合AD+BDABx+x52,解之求得x的值,從而得出答案.

解:如圖,過點CCDAB于點D

則∠ACD30°,∠BCD45°

ADx,

RtACD中,CDx,

RtBCD中,由∠BCD45°BDCDx,

∴由AD+BDABx+x52

解得:x26(1)2626,

BDx7826≈33,

答:此時航模C的飛行高度為33.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知A-4,2)、Bn,-4)兩點是一次函數(shù)y=kx+b和反比例函數(shù)圖象的兩個交點.

1)求一次函數(shù)和反比例函數(shù)的解析式.

2)求的面積.

3)觀察圖象,直接寫出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x24x+12+m0

(1)若方程的一個根是,求m的值及方程的另一根;

(2)若方程的兩根恰為等腰三角形的兩腰,而這個三角形的底邊為m,求m的值及這個等腰三角形的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在四邊形ABCD中,ACBD于點E,AB=AC=BD,點MBC中點,N為線段AM上的點,且MB=MN.

(1)求證:BN平分∠ABE;

(2)若BD=1,連結(jié)DN,當四邊形DNBC為平行四邊形時,求線段BC的長;

(3)如圖②,若點FAB的中點,連結(jié)FN、FM,求證:MFN∽△BDC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠C=90°,AC=20cm,BC=15cm.現(xiàn)有動點P從點A出發(fā),沿AC向點C方向運動,動點Q從點C出發(fā),沿線段CB也向點B方向運動.如果點P的速度是4cm/秒,點Q的速度是2cm/秒,它們同時出發(fā),當有一點到達所在線段的端點時,就停止運動,設運動的時間為t秒.

(1)用含t的代數(shù)式表示RtCPQ的面積S;

(2)t=3秒時,P、Q兩點之間的距離是多少?

(3)t為多少秒時,以點C、P、Q為頂點的三角形與△ABC相似?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=﹣+bx+c的圖象經(jīng)過點A(1,0)和點C(0,2),點D與點C關于x軸對稱,點Px軸上的一個動點,設點P的坐標為(m0),過點Px軸的垂線l交拋物線于點Q,交直線BD于點M.

(1)求該拋物線所表示的二次函數(shù)的表達式.

(2)已知點F(0,),當點Px軸正半軸上運動時,試求m為何值時,四邊形DMQF是平行四邊形?

(3)P在線段AB運動過程中,是否存在點Q,使得以點B、Q、M為頂點的三角形與△BOD相似?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知ABC的三個頂點坐標分別是A(1,1),B(4,1),C(3,3).

(1)將ABC向下平移5個單位后得到A1B1C1,請畫出A1B1C1;

(2)將ABC繞原點O逆時針旋轉(zhuǎn)90°后得到A2B2C2,請畫出A2B2C2

(3)判斷以O,A1,B為頂點的三角形的形狀.(無須說明理由)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A、B、C、D都在⊙O上,OC⊥AB,∠ADC=30°.

(1)求∠BOC的度數(shù);

(2)求證:四邊形AOBC是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小麗和哥哥小明分別從家和圖書館同時出發(fā),沿同一條路相向而行,小麗開始跑步,遇到哥哥后改為步行,到達圖書館恰好用35分鐘,小明勻速騎自行車直接回家,騎行10分鐘后遇到了妹妺,再繼續(xù)騎行5分鐘,到家兩人距離家的路程ym)與各自離開出發(fā)的時間xmin)之間的函數(shù)圖象如圖所示:

1)求兩人相遇時小明離家的距離;

2)求小麗離距離圖書館500m時所用的時間.

查看答案和解析>>

同步練習冊答案