如圖,⊙O的割線PAB交⊙O于點A、B,PA=7cm,AB=5cm,PO=10cm,則⊙O的半徑為   
【答案】分析:根據(jù)割線定理求解.
解答:解:延長PO交圓于點D,
由割線定理知,PA•PB=PC•PD=(PO-CO)(PO+CD),
代入數(shù)據(jù)解得,CO=4.
點評:本題利用了割線定理:從圓外一點P引兩條割線與圓分別交于A、B、C、D,則有PA•PB=PC•PD.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

15、如圖,⊙O的割線PAB交⊙O于點A、B,PA=7cm,AB=5cm,PO=10cm,則⊙O的半徑為
4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

7、如圖,⊙O的割線PAB交⊙O于點A,B,PA=14cm,AB=10cm,PO=20cm,則⊙O的半徑是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O的割線PBA交⊙O于A、B,PE切⊙O于E,∠APE的平分線和AE、BE分別交于C、D,PE=精英家教網(wǎng)4
3
,PB=4,∠AEB=60°.
(1)求證:△PDE∽△PCA;
(2)試求以PA、PB的長為根的一元二次方程;
(3)求⊙O的面積.(答案保留π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、如圖,⊙O的割線PAB交于⊙O于點A、B,PA=4cm,AB=5cm,PO=7.5cm,則⊙O的直徑長為
9
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1998•蘇州)如圖,⊙O的割線PB、PD分別交⊙O于A、B、C、D.已知PA=4,PB=10,PD=8,則PC=
5
5

查看答案和解析>>

同步練習冊答案