【題目】一元二次方程x2+x﹣3=0的根的情況是( )
A.有兩個(gè)不相等的實(shí)數(shù)根
B.有兩個(gè)相等的實(shí)數(shù)根
C.只有一個(gè)實(shí)數(shù)根
D.沒有實(shí)數(shù)根
【答案】A
【解析】解:∵△=12﹣4×(﹣3)=13>0, ∴方程有兩個(gè)不相等的兩個(gè)實(shí)數(shù)根.
故選A.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用求根公式的相關(guān)知識(shí)可以得到問題的答案,需要掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根2、當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根3、當(dāng)△<0時(shí),一元二次方程沒有實(shí)數(shù)根.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1=∠2,∠3=∠4,∠5=∠6.求證:ED∥FB.在下面的括號(hào)中填上推理依據(jù).
證明:∵∠3=∠4( 已知 )
∴CF∥BD
∴∠5+∠CAB=180°
∵∠5=∠6( 已知 )
∴∠6+∠CAB=180°( 等式的性質(zhì) )
∴AB∥CD
∴∠2=∠EGA
∵∠1=∠2( 已知 )
∴∠1=∠EGA( 等量代換 )
∴ED∥FB .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸相交的于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,頂點(diǎn)為D.
(1)直接寫出A,B,C三點(diǎn)的坐標(biāo)和拋物線的對(duì)稱軸;
(2)連接BC,與拋物線的對(duì)稱軸交于點(diǎn)E,點(diǎn)P為線段BC上的一個(gè)動(dòng)點(diǎn)(P不與C,B兩點(diǎn)重合),過點(diǎn)P作PF∥DE交拋物線于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m.
①用含m的代數(shù)式表示線段PF的長(zhǎng),并求出當(dāng)m為何值時(shí),四邊形PEDF為平行四邊形.
②設(shè)△BCF的面積為S,求S與m的函數(shù)關(guān)系式;當(dāng)m為何值時(shí),S有最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D,E在△ABC的邊BC上,連接AD,AE.下面有三個(gè)等式:①AB=AC;②AD=AE;③BD=CE.以此三個(gè)等式中的兩個(gè)作為命題的題設(shè),另一個(gè)作為命題的結(jié)論,相構(gòu)成以下三個(gè)命題:命題Ⅰ“如果①②成立,那么③成立”; 命題Ⅱ“如果①③成立,那么②成立”;命題Ⅲ“如果②③成立,那么①成立”.
(1)以上三個(gè)命題是真命題的為(直接作答);
(2)請(qǐng)選擇一個(gè)真命題進(jìn)行證明(先寫出所選命題,然后證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)P、Q分別是等邊△ABC邊AB、BC上的動(dòng)點(diǎn)(端點(diǎn)除外),點(diǎn)P從頂點(diǎn)A、點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的運(yùn)動(dòng)速度相同,連接AQ、CP交于點(diǎn)M.
(1)求證:△ABQ≌△CAP;
(2)如圖1,當(dāng)點(diǎn)P、Q分別在AB、BC邊上運(yùn)動(dòng)時(shí),∠QMC變化嗎?若變化,請(qǐng)說理由;若不變,求出它的度數(shù).
(3)如圖2,若點(diǎn)P、Q在分別運(yùn)動(dòng)到點(diǎn)B和點(diǎn)C后,繼續(xù)在射線AB、BC上運(yùn)動(dòng),直線AQ、CP交點(diǎn)為M,則∠QMC=度.(直接填寫度數(shù))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com