如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+6x+c的圖象經(jīng)過點A(4,0)、B(﹣1,0),與y軸交于點C,點D在線段OC上,OD=t,點E在第二象限,∠ADE=90°,tan∠DAE=,EF⊥OD,垂足為F.
(1)求這個二次函數(shù)的解析式;
(2)求線段EF、OF的長(用含t的代數(shù)式表示);
(3)當(dāng)△ECA為直角三角形時,求t的值.
(1)y=﹣2x2+6x+8;(2)EF=t,OF=t﹣2;(3)或8
【解析】
試題分析:(1)由二次函數(shù)的圖象經(jīng)過點A(4,0)、B(﹣1,0)根據(jù)待定系數(shù)法求解;
(2)先根據(jù)同角的余角相等可得∠DEF=∠ODA,即可證得△EDF∽△DAO,根據(jù)相似三角形的性質(zhì)可得,即可得到EF的長,同理可得DF的長,即可求得OF的長;
(3)先求的拋物線與y軸的交點C,即得OC的長,過E點作EM⊥x軸于點M,則在Rt△AEM中,EM=OF=t﹣2,AM=OA+AM=OA+EF=4+t,分當(dāng)∠CEA=90°時,當(dāng)∠ECA=90°時,兩種情況,根據(jù)勾股定理列方程求解即可.
(1)二次函數(shù)y=ax2+6x+c的圖象經(jīng)過點A(4,0)、B(﹣1,0),
∴,解得,
∴這個二次函數(shù)的解析式為:y=﹣2x2+6x+8;
(2)∵∠EFD=∠EDA=90°
∴∠DEF+∠EDF=90°,∠EDF+∠ODA=90°,
∴∠DEF=∠ODA
∴△EDF∽△DAO
∴.
∵,
∴=,
∴,
∴EF=t.
同理,
∴DF=2
∴OF=t﹣2.
(3)∵拋物線的解析式為:y=﹣2x2+6x+8,
∴C(0,8),OC=8.
如圖,過E點作EM⊥x軸于點M
則在Rt△AEM中,EM=OF=t﹣2,AM=OA+AM=OA+EF=4+t,
當(dāng)∠CEA=90°時,CE2+AE2=AC2
解得
當(dāng)∠ECA=90°時,CE2+AC2=AE2
解得
即點D與點C重合.
考點:二次函數(shù)的綜合題
點評:此類問題綜合性強,難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.
科目:初中數(shù)學(xué) 來源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com