【題目】(本小題滿分11分)如果一個(gè)三角形能被一條線段分割成兩個(gè)等腰三角形,那么稱這條線段為這個(gè)三角形的特異線,稱這個(gè)三角形為特異三角形.

(1)如圖1,ABC中,B=2C,線段AC的垂直平分線交AC于點(diǎn)D,交BC于點(diǎn)E.求證:AE是ABC的一條特異線;

(2)如圖2,若ABC是特異三角形,A=30°,B為鈍角,求出所有可能的B的度數(shù).

【答案】見(jiàn)解析

【解析】(1)如圖1中,

DE是線段AC的垂直平分線,EA=EC,即EAC是等腰三角形,(2分)

∴∠EAC=C,∴∠AEB=EAC+C=2C,

∵∠B=2C,∴∠AEB=B,即EAB是等腰三角形,(4分)

AE是ABC一條特異線.(5分)

(2)如圖2中,

當(dāng)BD是特異線時(shí),如果AB=BD=DC,則ABC=ABD+DBC=120°+15°=135°,

如果AD=AB,DB=DC,則ABC=ABD+DBC=75°+37.5°=112.5°,

如果AD=DB,DC=CB,則ABC=ABD+DBC=30°+60°=90°(不合題意,).(8分)

如圖3中,當(dāng)AD是特異線時(shí),AB=BD,AD=DC,則ABC=180°–20°–20°=140°,(9分)

當(dāng)CD為特異線時(shí),不合題意.(10分)

符合條件的ABC的度數(shù)為135°或112.5°或140°.(11分)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用一個(gè)平面去截一個(gè)幾何體,其截面形狀是圓,則原幾何體可能為___________________

圓柱 圓錐 正方體 長(zhǎng)方體(請(qǐng)?zhí)钌险_的序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】3,5,8,9,7,6,2的中位數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列方程:

(1)x24x=0

(2)x28x10=0(配方法)

(3)x2+6x1=0

(4)2x2+5x3=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料,解答問(wèn)題:
定義:線段AD把等腰三角形ABC分成△ABD與△ACD(如圖1),如果△ABD與△ACD均為等腰三角形,那么線段AD叫做△ABC的完美分割線.

(1)如圖1,已知△ABC中,AB=AC,∠BAC=108°,AD為△ABC的完美分割線,且BD<CD,則∠B= , ∠ADC=.
(2)如圖2,已知△ABC中,AB=AC,∠A=36°,BE為△ABC的角平分線,求證:BE為△ABC完美分割線.
(3)如圖3,已知△ABC是一等腰三角形紙片,AB=AC,AD是它的一條完美分割線,將△ABD沿直線AD折疊后,點(diǎn)B落在點(diǎn)B1處,AB1交CD于點(diǎn)E,求證:DB1=EC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將拋物線yx22x+3向上平移2個(gè)單位長(zhǎng)度,再向右平移3個(gè)單位長(zhǎng)度后,得到的拋物線的解析式為( 。

A.y=(x12+4B.y=(x42+4C.y=(x+22+6D.y=(x42+6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】分解因式:a3﹣16a=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知單項(xiàng)式xay3與﹣4xy4b是同類項(xiàng),那么ab的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知C,D兩點(diǎn)將線段AB分為三部分,且AC:CD:DB=2:3:4,若AB的中點(diǎn)為M,BD的中點(diǎn)為N,且MN=5cm,求AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案