如圖,四邊形ABCD是矩形,對角線AC、BD相交于點O,BE∥AC交DC的延長線于點E.

(1)求證:BD=BE;

(2)若ÐDBC=30°,BO=4,求四邊形ABED的面積.

 

【答案】

(1)證明:∵四邊形ABCD是矩形,∴AC=BD,AB∥CD,

∵BE∥AC,∴四邊形ABEC是平行四邊形。

∴AC=BE!郆D=BE。

(2)解:∵在矩形ABCD中,BO=4,∴BD=2BO=2×4=8。

∵∠DBC=30°,∴CD=BD=×8=4,BC=BD·cos∠DBC=8×。

∵BD=BE,BC⊥DE,∴CE=CD=4,∴DE=8

∴四邊形ABED的面積=(AB+DE)·BC=×(4+8)×。

【解析】矩形的性質(zhì),平行四邊形的判定和性質(zhì),等腰三角形的性質(zhì),銳角三角函數(shù)定義,特殊角的三角函數(shù)值。

【分析】(1)根據(jù)矩形的對角線相等可得AC=BD,然后證明四邊形ABEC是平行四邊形,再根據(jù)平行四邊形的對邊相等可得AC=BE,從而得證。

(2)根據(jù)矩形的對角線互相平分求出BD的長度,根據(jù)30°角所對的直角邊等于斜邊的一半求出CD的長度,根據(jù)銳角三角函數(shù)求出BC的長(或用勾股定理求),并根據(jù)等腰三角形三線合一的性質(zhì)求出DE的長,最后利用梯形的面積公式列式計算即可得解。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設(shè)AC=2a,BD=2b,請推導(dǎo)這個四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案