【題目】若關(guān)于 的方程 有三個(gè)根,且這三個(gè)根恰好可以作為一個(gè)三角形的三條邊的長(zhǎng),則 的取值范圍是________.

【答案】3m≤4

【解析】

根據(jù)原方程可知x-2=0,和x2-4x+m=0,因?yàn)殛P(guān)于x的方程(x-2)(x2-4x+m=0有三個(gè)根,所以x2-4x+m=0的根的判別式0,然后再由三角形的三邊關(guān)系來(lái)確定m的取值范圍

解:關(guān)于x的方程(x-2)(x2-4x+m=0有三個(gè)根,

∴①x-2=0,解得x1=2

②x2-4x+m=0,

∴△=16-4m≥0,即m≤4,

∴x2=2+

x3=2-

這三個(gè)根恰好可以作為一個(gè)三角形的三條邊的長(zhǎng),

且最長(zhǎng)邊為x2,

∴x1+x3x2;

解得3m≤4,

∴m的取值范圍是3m≤4

故答案為:3m≤4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:閱讀下列材料:已知二次三項(xiàng)式2x2+x+a有一個(gè)因式是(x+2),求另一個(gè)因式以及a 的值

解:設(shè)另一個(gè)因式是(2x+b),

根據(jù)題意,得2x2+x+a=(x+2)(2x+b),

展開,得2x2+x+a =2x2+(b+4)x+2b,

所以,解得,

所以,另一個(gè)因式是(2x3),a 的值是6.

請(qǐng)你仿照以上做法解答下題:已知二次三項(xiàng)式3x2 10x m 有一個(gè)因式是(x+4),求另一個(gè)因式以及m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD中,BD是對(duì)角線,∠ABC=90 °,tan∠ABD= ,AB=20,BC=10,AD=13,則線段CD=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形中,點(diǎn)是對(duì)角線的中點(diǎn),點(diǎn)上一點(diǎn),連接,且,點(diǎn)中點(diǎn),,連接,延長(zhǎng)于點(diǎn)

1)若,求的長(zhǎng)度;

2)若,求證

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形的邊長(zhǎng)為4,在這個(gè)正方形內(nèi)作等邊三角形(三角形的頂點(diǎn)可以在正方形的邊上),使它們的中心重合,則的頂點(diǎn)到正方形的頂點(diǎn)的最短距離是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一張圓形紙片,小芳進(jìn)行了如下連續(xù)操作:

(1)將圓形紙片左右對(duì)折,折痕為AB,如圖(2)所示.

(2)將圓形紙片上下折疊,使A、B兩點(diǎn)重合,折痕CD與AB相交于M,如圖(3)所示.

(3)將圓形紙片沿EF折疊,使B、M兩點(diǎn)重合,折痕EF與AB相交于N,如圖(4)所示.

(4)連結(jié)AE、AF,如圖(5)所示.

經(jīng)過以上操作小芳得到了以下結(jié)論:

①CD∥EF;②四邊形MEBF是菱形;③△AEF為等邊三角形;④,

以上結(jié)論正確的有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)驗(yàn)中學(xué)課外活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形生物苗圃園,其中一邊靠墻,另外三邊用長(zhǎng)度為30米的籬笆圍成已知墻長(zhǎng)18米,設(shè)這個(gè)苗圃園垂直于墻的一邊為x米.

(1)若平行于墻的一邊的長(zhǎng)為y米,直接寫出y與x之間的函數(shù)關(guān)系,以及其自變量的取值范圍.

(2)若垂直于墻的一邊的長(zhǎng)不小于8米,當(dāng)x為多少米時(shí),這個(gè)苗圃的面積最大?求出這個(gè)最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人在一條直線道路上分別從相距1500米的A,B 兩點(diǎn)同時(shí)出發(fā),相向而行,當(dāng)兩人相遇后,甲繼續(xù)向點(diǎn)B前進(jìn)(甲到達(dá)點(diǎn)B時(shí)停止運(yùn)動(dòng)),乙也立即向B點(diǎn)返回.在整個(gè)運(yùn)動(dòng)過程中,甲、乙均保持勻速運(yùn)動(dòng).甲、乙兩人之間的距離y(米)與乙運(yùn)動(dòng)的時(shí)間x(秒) 之間的關(guān)系如圖所示.則甲到B點(diǎn)時(shí),乙距B點(diǎn)的距離是________米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店經(jīng)銷一種雙肩包,已知這種雙肩包的成本價(jià)為每個(gè)30元.市場(chǎng)調(diào)查發(fā)現(xiàn),這種雙肩包每天的銷售量y(單位:個(gè))與銷售單價(jià)x(單位:元)有如下關(guān)系:y=-x+60(30≤x≤60).

設(shè)這種雙肩包每天的銷售利潤(rùn)為w元.

(1)求w與x之間的函數(shù)解析式;

(2)這種雙肩包銷售單價(jià)定為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少元?

(3)如果物價(jià)部門規(guī)定這種雙肩包的銷售單價(jià)不高于48元,該商店銷售這種雙肩包每天要獲得200元的銷售利潤(rùn),銷售單價(jià)應(yīng)定為多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案