如圖是一個(gè)上底和腰長(zhǎng)為2的等腰梯形,點(diǎn)Q從A點(diǎn)出發(fā),以1個(gè)單位/秒的速度向B運(yùn)動(dòng),點(diǎn)P從D點(diǎn)出發(fā),以1個(gè)單位/秒的速度向C運(yùn)動(dòng).∠D=60°,則當(dāng)運(yùn)動(dòng)時(shí)間為________秒時(shí),四邊形CPQB的面積為數(shù)學(xué)公式

4-
分析:由點(diǎn)P、Q運(yùn)動(dòng)的速度相等,可得四邊形CPQB是等腰梯形,設(shè)時(shí)間為t,用含t的式子表示出四邊形CPQB的面積,建立二元一次方程,求解即可.
解答:如圖所示:

設(shè)當(dāng)運(yùn)動(dòng)時(shí)間為t秒時(shí),四邊形CPQB的面積為,
則DP=t,CP=2-t,∠CPQ=∠D=60°,
∴∠ECP=30°,
∴PE=(2-t),CE=(2-t),
又∵四邊形CPQB是等腰梯形,
∴PQ=CB+2PE=2+2-t=4-t,
∴S四邊形CPQB=(CB+PQ)×CE=(2+4-t)×(2-t)=t2-2t+3=
解得:t1=4-,t2=4+(舍去).
故當(dāng)運(yùn)動(dòng)時(shí)間為(4-)秒時(shí),四邊形CPQB的面積為
故答案為:(4-).
點(diǎn)評(píng):本題考查了等腰梯形的性質(zhì),解答本題的關(guān)鍵是判斷出四邊形CPQB是等腰梯形,熟練掌握等腰梯形的性質(zhì),有一定難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖是規(guī)格為8×8的正方形網(wǎng)格,請(qǐng)?jiān)谒o網(wǎng)格中按下列要求操作:
(1)請(qǐng)?jiān)诰W(wǎng)格中建立平面直角坐標(biāo)系,使A點(diǎn)坐標(biāo)為(-2,4),B點(diǎn)坐標(biāo)為(-4,2);
(2)在第二象限內(nèi)的格點(diǎn)上畫一點(diǎn)C,使點(diǎn)C與線段AB組成一個(gè)以AB為底的等腰三角形,且腰長(zhǎng)是無理數(shù),則C點(diǎn)坐標(biāo)是
 
,△ABC的周長(zhǎng)是
 
(結(jié)果保留根號(hào));
(3)畫出△ABC以點(diǎn)C為旋轉(zhuǎn)中心,旋轉(zhuǎn)180°后的△A′B′C,連接AB′和A′B,試說出四邊形ABA′B′是何特殊四邊形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

9、一個(gè)等腰梯形的上底和腰的長(zhǎng)都是1,下底的長(zhǎng)為2,將這樣的梯形按如圖的方式拼接在一起:共有八個(gè)這樣的梯形,則由它們拼接成的圖形周長(zhǎng)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖是一個(gè)上底和腰長(zhǎng)為2的等腰梯形,點(diǎn)Q從A點(diǎn)出發(fā),以1個(gè)單位/秒的速度向B運(yùn)動(dòng),點(diǎn)P從D點(diǎn)出發(fā),以1個(gè)單位/秒的速度向C運(yùn)動(dòng).∠D=60°,則當(dāng)運(yùn)動(dòng)時(shí)間為
4-
7
4-
7
秒時(shí),四邊形CPQB的面積為
3
3
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

一個(gè)等腰梯形的上底和腰的長(zhǎng)都是1,下底的長(zhǎng)為2,將這樣的梯形按如圖的方式拼接在一起:共有八個(gè)這樣的梯形,則由它們拼接成的圖形周長(zhǎng)為


  1. A.
    14
  2. B.
    26
  3. C.
    32
  4. D.
    36

查看答案和解析>>

同步練習(xí)冊(cè)答案