如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),以點(diǎn)A(0,-3)為圓心,5為半徑作圓A,交x軸于B、C兩點(diǎn),交y軸于點(diǎn)D、E兩點(diǎn).
(1)如果一個二次函數(shù)圖象經(jīng)過B、C、D三點(diǎn),求這個二次函數(shù)的解析式;
(2)設(shè)點(diǎn)P的坐標(biāo)為(m,0)(m>5),過點(diǎn)P作x軸交(1)中的拋物線于點(diǎn)Q,當(dāng)以為頂點(diǎn)的三角形與相似時,求點(diǎn)P的坐標(biāo).
(1);(2)
【解析】
試題分析:(1)利用垂徑定理求得線段OB和OC的長,從而求得B、C兩點(diǎn)的坐標(biāo),利用待定系數(shù)法求得二次函數(shù)的解析式即可;
(2)作出圖形利用相似三角形的對應(yīng)邊成比例列出有關(guān)未知數(shù)m的方程求解即可.
(1)連接AC,
∵以點(diǎn)A(0,-3)為圓心,5為半徑作圓A,交x軸于B、C兩點(diǎn),交y軸于D、E兩點(diǎn).
∴AC=5、AO=3,
∴由勾股定理得:OC=OB=4
∴點(diǎn)B的坐標(biāo)為(-4,0),點(diǎn)C的坐標(biāo)為(4,0),點(diǎn)D的坐標(biāo)為(0,2).
∵對稱軸為y軸,
∴設(shè)二次函數(shù)的解析式為y=ax2+c
∴經(jīng)過B、C、D三點(diǎn)的二次函數(shù)的解析式為;
(2)∵P的坐標(biāo)為(m,0)(m>5),
∴Q點(diǎn)的坐標(biāo)為(m,)
∴PC=m-4,PQ=
∵以O(shè)、C、D為頂點(diǎn)的三角形與△PCQ相似,
①當(dāng)△ODC∽△PCQ時,
解得:m=12或m=4(因m>5,故舍去)
②當(dāng)△OCD∽△PCQ時,
解得:m=0或4(因m>5,故舍去)
∴P點(diǎn)的坐標(biāo)為:(12,0).
考點(diǎn):二次函數(shù)解析式的確定及垂徑定理的應(yīng)用
點(diǎn)評:此類問題綜合性強(qiáng),難度較大,在中考中比較常見,題目比較典型.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k |
x |
k |
x |
|
|
|
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com