【題目】如圖,在ABC中,∠B=60°,⊙O是ABC的外接圓,過點(diǎn)A作O的切線,交CO的延長(zhǎng)線于點(diǎn)M,CM交O于點(diǎn)D.

(1)求證:AM=AC;

(2)若AC=3,求MC的長(zhǎng).

【答案】(1)證明見解析(2)3

【解析】試題分析:(1)連接OA,可求出∠AOC=120°,得到∠OCA的度數(shù),由切線的性質(zhì)求出∠M的度數(shù),即可得到答案;

2)作AG⊥CMG,由直角三角形的性質(zhì)求出AG的長(zhǎng),由勾股定理求出CG,即可得到答案.

試題解析:(1)連接OA,∵AM⊙O的切線,∴∠OAM=90°,∵∠B=60°∴∠AOC=120°,∵OA=OC,∴∠OCA=∠OAC=30°,∴∠AOM=60°,∴∠M=30°,∴∠OCA=∠M,∴AM=AC;

2)作AGCMG,∵∠OCA=30°,AC=3AG=,由勾股定理的,CG=,則MC=2CG=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)古代數(shù)學(xué)的許多發(fā)現(xiàn)都曾位居世界前列,其中楊輝三角就是一大重要研究成果.如圖所示的三角形數(shù)表,稱楊輝三角.具體法則:兩側(cè)的數(shù)都是1,其余每個(gè)數(shù)均為其上方左右兩數(shù)之和,它給出了(a+bnn為正整數(shù))的展開式(按a的次數(shù)由大到小的順序排列)的系數(shù)規(guī)律:

1)根據(jù)上面的規(guī)律,寫出(a+b5的展開式;

2)利用上面的規(guī)律計(jì)算:(﹣34+4×(﹣33×2+6×(﹣32×22+4×(﹣3×23+24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠承接了一批紙箱加工任務(wù),用如圖1所示的長(zhǎng)方形和正方形紙板(長(zhǎng)方形的寬與正方形的邊長(zhǎng)相等)作側(cè)面和底面,加工成如圖2所示的豎式和橫式兩種無蓋的長(zhǎng)方體紙箱.(加工時(shí)接縫材料不計(jì))

1 2

1)若該廠倉(cāng)庫(kù)里有1000張正方形紙板和2000張長(zhǎng)方形紙板。問豎式和橫式紙箱各加工多少個(gè),恰好將庫(kù)存的兩種紙板全部用完?

2)該工廠原計(jì)劃用若干天加工紙箱2400個(gè),后來由于對(duì)方急需要貨,實(shí)際加工時(shí)每天加工速度是原計(jì)劃的1.5倍,這樣提前2天完成了任務(wù),問原計(jì)劃每天加工紙箱多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,ACBD相交于點(diǎn)O,AOB=60°,BD=4,將ABC沿直線AC翻折后,點(diǎn)B落在點(diǎn)E處,那么SAED=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊ABC點(diǎn)DABC內(nèi)的一點(diǎn),ADB=120°ADC=90°,ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°ACE,連接DE

1)求證AD=DE;

2)求DCE的度數(shù);

3)若BD=1,AD,CD的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“知識(shí)改變命運(yùn),科技繁榮祖國(guó)”.我市中小學(xué)每年都要舉辦一屆科技運(yùn)動(dòng)會(huì).下圖為我市某校2009年參加科技運(yùn)動(dòng)會(huì)航模比賽(包括空模、海模、車模、建模四個(gè)類別)的參賽人數(shù)統(tǒng)計(jì)圖:

(1)該校參加車模、建模比賽的人數(shù)分別是 人和 人;

(2)該校參加航模比賽的總?cè)藬?shù)是 人,空模所在扇形的圓心角的度數(shù)是 °,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;(溫馨提示:作圖時(shí)別忘了用0.5毫米及以上的黑色簽字筆涂黑)

(3)從全市中小學(xué)參加航模比賽選手中隨機(jī)抽取80人,其中有32人獲獎(jiǎng).今年我市中小學(xué)參加航模比賽人數(shù)共有2485人,請(qǐng)你估算今年參加航模比賽的獲獎(jiǎng)人數(shù)約是多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列能判定AB∥CD的條件有( )個(gè).

1∠B+∠BCD=180°;(2∠1=∠2;(3∠3=∠4;(4∠B=∠5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一座橋如圖,橋下水面寬度AB是20米,高CD是4米.要使高為3米的船通過,則其寬度須不超過多少米.

(1)如圖1,若把橋看做是拋物線的一部分,建立如圖坐標(biāo)系.

①求拋物線的解析式;

②要使高為3米的船通過,則其寬度須不超過多少米?

(2)如圖2,若把橋看做是圓的一部分.

①求圓的半徑;

②要使高為3米的船通過,則其寬度須不超過多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+5的圖象與反比例函數(shù)k≠0)在第一象限的圖象交于A(1,n)和B兩點(diǎn).

(1)求反比例函數(shù)的解析式及點(diǎn)B坐標(biāo);

(2)在第一象限內(nèi),當(dāng)一次函數(shù)y=-x+5的值大于反比例函數(shù)k≠0)的值時(shí),寫出自變量x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案