【題目】已知:如圖,AB是⊙O的弦,∠OAB=45°,C是優(yōu)弧AB上的一點(diǎn),BD∥OA,交CA延長(zhǎng)線于點(diǎn)D,連接BC.
(1)求證:BD是⊙O的切線;
(2)若AC=,∠CAB=75°,求⊙O的半徑.
【答案】(1)見解析;(2)4.
【解析】
試題分析:(1)連接OB,如圖.根據(jù)題意得,∠1=∠OAB=45°.由AO∥DB,得∠2=∠OAB=45°.則∠1+∠2=90°.即BD⊥OB于B.從而得出CD是⊙O的切線.
(2)作OE⊥AC于點(diǎn)E.由OE⊥AC,AC=,求得AE,由∠BAC=75°,∠OAB=45°,得出∠3.在Rt△OAE中,求得OA即可.
(1)證明:連接OB,如圖.
∵OA=OB,∠OAB=45°,
∴∠1=∠OAB=45°.
∵AO∥DB,
∴∠2=∠OAB=45°.
∴∠1+∠2=90°.
∴BD⊥OB于B.
∴又點(diǎn)B在⊙O上.
∴BD是⊙O的切線.
(2)解:作OE⊥AC于點(diǎn)E.
∵OE⊥AC,AC=,
∴AE==.
∵∠BAC=75°,∠OAB=45°,
∴∠3=∠BAC﹣∠OAB=30°.
∴在Rt△OAE中,
解法二:如圖
延長(zhǎng)AO與⊙O交于點(diǎn)F,連接FC.
∴∠ACF=90°.
在Rt△ACF中,.
∴AO==4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè), ,……, ,(n為正整數(shù))
(1)試說明是8的倍數(shù);
(2)若△ABC的三條邊長(zhǎng)分別為、、(為正整數(shù))
①求的取值范圍.
②是否存在這樣的,使得△ABC的周長(zhǎng)為一個(gè)完全平方數(shù),若存在,試舉出一例,若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)填空: ,, ,…
(2)探索(1)中式子的規(guī)律,試寫出第個(gè)等式,并說明第個(gè)等式成立:
(3)計(jì)算: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的有( ) ①等腰三角形的兩腰相等;②等腰三角形的兩底角相等;③等腰三角形底邊上的中線與底邊上的高相等;④等腰三角形是軸對(duì)稱圖形.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在0,2,﹣7,﹣5,3中,最小數(shù)的相反數(shù)是_____,絕對(duì)值最小的數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)投入13 800元資金購進(jìn)甲、乙兩種礦泉水共500箱,礦泉水的成本價(jià)和銷售價(jià)如表所示:
類別/單價(jià) | 成本價(jià) | 銷售價(jià)(元/箱) |
甲 | 24 | 36 |
乙 | 33 | 48 |
(1)該商場(chǎng)購進(jìn)甲、乙兩種礦泉水各多少箱?
(2)全部售完500箱礦泉水,該商場(chǎng)共獲得利潤(rùn)多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com