【題目】如圖①,已知AB∥CD,點(diǎn)E、F分別是AB、CD上的點(diǎn),點(diǎn)P是兩平行線之間的一點(diǎn),設(shè)∠AEP=α,∠PFC=β,在圖①中,過點(diǎn)E作射線EH交CD于點(diǎn)N,作射線FI,延長(zhǎng)PF到G,使得PE、FG分別平分∠AEH、∠DFI,得到圖②.
(1)在圖①中,當(dāng)α=20°,β=50°時(shí),求∠EPF的度數(shù);
(2)在(1)的條件下,求圖②中∠END與∠CFI的度數(shù);
(3)在圖②中,當(dāng)FI∥EH時(shí),請(qǐng)求出α與β的數(shù)量關(guān)系.
【答案】(1)70°;(2)40°,80°;(3)α+β=90°.
【解析】
(1)由PM∥AB根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠EPM=∠AEP=20°,根據(jù)平行公理的推論可得PM∥CD,繼而可得∠MPF=∠CFP=50°,從而即可求得∠EPF;
(2)由角平分線的定義可得∠AEH=2α=40°,再根據(jù)AD∥BC,由兩直線平行,內(nèi)錯(cuò)角相等可得∠END=∠AEH=40°,由對(duì)頂角相等以及角平分線定義可得∠IFG=∠DFG=β=50°,再根據(jù)平角定義即可求得∠CFI的度數(shù);
(3)由(2)可得,∠CFI=180°-2β,由AB∥CD,可得∠END=2α,當(dāng)FI∥EH時(shí),∠END=∠CFI,據(jù)此即可得α+β=90°.
(1)∵PM∥AB,α=20°,
∴∠EPM=∠AEP=20°,
∵AB∥CD,PM∥AB,
∴PM∥CD,
∴∠MPF=∠CFP=50°,
∴∠EPF=20°+50°=70°;
(2)∵PE平分∠AEH,
∴∠AEH=2α=40°,
∵AD∥BC,
∴∠END=∠AEH=40°,
又∵FG平分∠DFI,
∴∠IFG=∠DFG=β=50°,
∴∠CFI=180°-2β=80°;
(3)由(2)可得,∠CFI=180°-2β,
∵AB∥CD,
∴∠END=∠AEN=2α,
∴當(dāng)FI∥EH時(shí),∠END=∠CFI,
即2α=180°-2β,
∴α+β=90°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,B1(0,1),B2(0,3),B3(0,6),B4(0,10),…,以B1B2為對(duì)角線作第一個(gè)正方形A1B1C1B2,以B2B3為對(duì)角線作第二個(gè)正方形A2B2C2B3,以B3B4為對(duì)角線作第三個(gè)正方形A3B3C3B4,…,如果所作正方形的對(duì)角線BnBn+1都在y軸上,且BnBn+1的長(zhǎng)度依次增加1個(gè)單位,頂點(diǎn)An都在第一象限內(nèi)(n≥1,且n為整數(shù)). 那么A1的坐標(biāo)為____________;An的坐標(biāo)為_________(用含n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩工程隊(duì)分別同時(shí)開挖兩條600米長(zhǎng)的管道,所挖管道長(zhǎng)度y(米)與挖掘時(shí)間x(天)之間的關(guān)系如圖所示,則下列說法中:
①甲隊(duì)每天挖100米;
②乙隊(duì)開挖兩天后,每天挖50米;
③甲隊(duì)比乙隊(duì)提前3天完成任務(wù);
④當(dāng)x=2或6時(shí),甲乙兩隊(duì)所挖管道長(zhǎng)度都相差100米.
正確的有 . (在橫線上填寫正確的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)O為直線AB上一點(diǎn),將直角三角板MON的直角頂點(diǎn)放在點(diǎn)O處,并在∠MON內(nèi)部作射線OC.
(1)如圖1,三角板的一邊ON與射線OB重合,且∠AOC=150°.若以點(diǎn)O為觀察中心,射線OM表示正北方向,求射線OC表示的方向;
(2)如圖2,將三角板放置到如圖位置,使OC恰好平分∠MOB,且∠BON=2∠NOC,求∠AOM的度數(shù);
(3)若仍將三角板按照如圖2的方式放置,僅滿足OC平分∠MOB,試猜想∠AOM與∠NOC之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤被3等分,指針落在每個(gè)扇形內(nèi)的機(jī)會(huì)均等.
(1)現(xiàn)隨機(jī)轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,停止后,指針指向2的概率為;
(2)小明和小華利用這個(gè)轉(zhuǎn)盤做游戲,若采用下列游戲規(guī)則,你認(rèn)為對(duì)雙方公平嗎?請(qǐng)用列表或畫樹狀圖的方法說明理由.
游戲規(guī)則:隨機(jī)轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,停止后,指針各指向一個(gè)數(shù)字,若兩數(shù)之積為偶數(shù),則小明勝;否則小華勝.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(jí)數(shù)學(xué)興趣小組為了測(cè)得該校地下停車場(chǎng)的限高CD,在課外活動(dòng)時(shí)間測(cè)得下列數(shù)據(jù):如圖,從地面E點(diǎn)測(cè)得地下停車場(chǎng)的俯角為30°,斜坡AE的長(zhǎng)為16米,地面B點(diǎn)(與E點(diǎn)在同一個(gè)水平線)距停車場(chǎng)頂部C點(diǎn)(A、C、B在同一條直線上且與水平線垂直)1.2米.試求該校地下停車場(chǎng)的高度AC及限高CD(結(jié)果精確到0.1米).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,已知∠1+∠2=180°,∠3=∠B 求證:∠AED=∠ACB
證明:∵∠1+∠4=180°(平角定義)
∠1+∠2=180°(已知)
∴_____________( )
∴ ∥ ( )
∴∠3+∠ =180°( )
又∵∠3=∠B(已知)
∴∠ +∠ =180°(等量代換)
∴ ∥ ( )
∴∠AED=∠ACB( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,過等腰直角三角形ABC的直角頂點(diǎn)A作直線AP,點(diǎn)B關(guān)于直線AP的對(duì)稱點(diǎn)為E,連接BE,CE,其中CE交直線AP于點(diǎn)F.
(1)依題意補(bǔ)全圖形;
(2)若∠PAB=16°,求∠ACF的度數(shù);
(3)如圖2,若45°<∠PAB<90°,用等式表示線段AB,FE,FC之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】Rt△ABC中,∠C=90°,點(diǎn)D、E分別是△ABC邊AC、BC上的點(diǎn),點(diǎn)P是一動(dòng)點(diǎn).令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若點(diǎn)P在線段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2= °;
(2)若點(diǎn)P在邊AB上運(yùn)動(dòng),如圖(2)所示,則∠α、∠1、∠2之間有何關(guān)系?說明理由.
(3)若點(diǎn)P在Rt△ABC斜邊BA的延長(zhǎng)線上運(yùn)動(dòng)(CE<CD),則∠α、∠1、∠2之間有何關(guān)系?猜想并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com