【題目】某校九年級(jí)數(shù)學(xué)興趣小組為了測(cè)得該校地下停車場的限高CD,在課外活動(dòng)時(shí)間測(cè)得下列數(shù)據(jù):如圖,從地面E點(diǎn)測(cè)得地下停車場的俯角為30°,斜坡AE的長為16米,地面B點(diǎn)(與E點(diǎn)在同一個(gè)水平線)距停車場頂部C點(diǎn)(A、C、B在同一條直線上且與水平線垂直)1.2米.試求該校地下停車場的高度AC及限高CD(結(jié)果精確到0.1米).
【答案】解:由題意得,AB⊥EB,CD⊥AE,
∴∠CDA=∠EBA=90°,
∵∠E=30°,
∴AB= AE=8米,
∵BC=1.2米,
∴AC=AB﹣BC=6.8米,
∵∠DCA=90°﹣∠A=30°,
∴CD=AC×cos∠DCA=6.8× ≈5.9米.
答:該校地下停車場的高度AC為6.8米,限高CD約為5.9米.
【解析】本題主要考查了解直角三角形的應(yīng)用-仰角俯角問題,先根據(jù)題意和正弦的定義求出AB的長,根據(jù)余弦的定義求出CD的長即可.
【考點(diǎn)精析】關(guān)于本題考查的關(guān)于仰角俯角問題,需要了解仰角:視線在水平線上方的角;俯角:視線在水平線下方的角才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,大樓AB右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測(cè)得障礙物邊緣點(diǎn)C的俯角為30°,測(cè)得大樓頂端A的仰角為45°(點(diǎn)B,C,E在同一水平直線上),已知AB=80m,DE=10m,求障礙物B,C兩點(diǎn)間的距離(結(jié)果精確到0.1m)(參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知CO1是△ABC的中線,過點(diǎn)O1作O1E1∥AC交BC于點(diǎn)E1 , 連接AE1交CO1于點(diǎn)O2;過點(diǎn)O2作O2E2∥AC交BC于點(diǎn)E2 , 連接AE2交CO1于點(diǎn)O3;過點(diǎn)O3作O3E3∥AC交BC于點(diǎn)E3 , …,如此繼續(xù),可以依次得到點(diǎn)O4 , O5 , …,On和點(diǎn)E4 , E5 , …,En . 則OnEn=AC.(用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形ABCD中,AB=2,∠A=120°,點(diǎn)P、Q、K分別為線段BC,CD,BD上的任意一點(diǎn),則PK+QK的最小值為( )
A. 1 B. 3 C. D. +1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知AB∥CD,點(diǎn)E、F分別是AB、CD上的點(diǎn),點(diǎn)P是兩平行線之間的一點(diǎn),設(shè)∠AEP=α,∠PFC=β,在圖①中,過點(diǎn)E作射線EH交CD于點(diǎn)N,作射線FI,延長PF到G,使得PE、FG分別平分∠AEH、∠DFI,得到圖②.
(1)在圖①中,當(dāng)α=20°,β=50°時(shí),求∠EPF的度數(shù);
(2)在(1)的條件下,求圖②中∠END與∠CFI的度數(shù);
(3)在圖②中,當(dāng)FI∥EH時(shí),請(qǐng)求出α與β的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠ABC=120°,AB=10cm,點(diǎn)P是這個(gè)菱形內(nèi)部或邊上的一點(diǎn).若以P,B,C為頂點(diǎn)的三角形是等腰三角形,則P,A(P,A兩點(diǎn)不重合)兩點(diǎn)間的最短距離為______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索研究:已知:△ABC和△CDE都是等邊三角形.
(1)如圖1,若點(diǎn)A、C、E在一條直線上時(shí),我們可以得到結(jié)論:線段AD與BE的數(shù)量關(guān)系為: ,
線段AD與BE所成的銳角度數(shù)為°;
(2)如圖2,當(dāng)點(diǎn)A、C、E不在一條直線上時(shí),請(qǐng)證明(1)中的結(jié)論仍然成立;
靈活運(yùn)用:
如圖3,某廣場是一個(gè)四邊形區(qū)域ABCD,現(xiàn)測(cè)得:AB=60m,BC=80m,且∠ABC=30°,∠DAC=∠DCA=60°,試求水池兩旁B、D兩點(diǎn)之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交BC于點(diǎn)D,交AB于點(diǎn)E,過點(diǎn)D作DF⊥AB,垂足為F,連接DE.
(1)求證:直線DF與⊙O相切;
(2)若AE=7,BC=6,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于有理數(shù)a、b,定義運(yùn)算:“★”,當(dāng)a≥b時(shí),a★b=2a-3b,當(dāng)a<b時(shí),a★b=.
(1)計(jì)算:(x+2)★(x+1)的值;
(2)若(x+1)★(2x-1)=-1,求x的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com