如圖,四邊形ABCD的對角線AC、BD相交于點O,△ABC≌△BAD.求證:
(1)OA=OB;
(2)∠OCD=∠ODC.

證明:(1)∵△ABC≌△BAD,
∴∠CAB=∠DBA,
∴OA=OB.

(2)∵△ABC≌△BAD,
∴AC=BD,
又∵OA=OB,
∴AC-OA=BD-OB,
即:OC=OD,
∴∠OCD=∠ODC.
分析:(1)要證OA=OB,由等角對等邊需證∠CAB=∠DBA,由已知△ABC≌△BAD即可證.
(2)由已知得AC=BD,由(1)可知OA=OB,所以O(shè)C=OD,可證∠OCD=∠ODC.
點評:本題考查了全等三角形的性質(zhì)和等腰三角形的性質(zhì)及平行線的性質(zhì).解答時,除必備的知識外,還應(yīng)將條件和所求聯(lián)系起來,即將所求的角與已知角通過全等及內(nèi)角之間的關(guān)系聯(lián)系起來.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設(shè)AC=2a,BD=2b,請推導(dǎo)這個四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案