【題目】如圖,在△ABC中,點O是AC邊上(端點除外)的一個動點,過點O作直線MN∥BC.設(shè)MN交∠BCA的平分線于點E,交∠BCA的外角平分線于點F,連接AE、AF.那么當(dāng)點O運動到何處時,四邊形AECF是矩形?并證明你的結(jié)論.
【答案】當(dāng)點O運動到AC的中點(或OA=OC)時,四邊形AECF是矩形.證明見解析.
【解析】
當(dāng)點O運動到AC的中點(或OA=OC)時,四邊形AECF是矩形.由于CE平分∠BCA,那么有∠1=∠2,而MN∥BC,利用平行線的性質(zhì)有∠1=∠3,等量代換有∠2=∠3,于OE=OC,同理OC=OF,于是OE=OF,而OA=OC,那么可證四邊形AECF是平行四邊形,又CE、CF分別是∠BCA及其外角的角平分線,易證∠ECF是90°,從而可證四邊形AECF是矩形.
當(dāng)點O運動到AC的中點(或OA=OC)時,四邊形AECF是矩形.
證明:如圖,
∵CE平分∠BCA,
∴∠1=∠2,
又∵MN∥BC,
∴∠1=∠3,
∴∠3=∠2,
∴EO=CO,
同理,FO=CO,
∴EO=FO,
又∵OA=OC,
∴四邊形AECF是平行四邊形,
∵CF是∠BCA的外角平分線,
∴∠4=∠5,
又∵∠1=∠2,
∴∠1+∠5=∠2+∠4,
又∵∠1+∠5+∠2+∠4=180°,
∴∠2+∠4=90°,
∴平行四邊形AECF是矩形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx-8與x軸交于A,B兩點,與y軸交于點C,直線l經(jīng)過坐標(biāo)原點O,與拋物線的一個交點為D,與拋物線的對稱軸交于點E,連接CE,已知點A,D的坐標(biāo)分別為(-2,0),(6,-8).
(1)求拋物線的解析式,并分別求出點B和點E的坐標(biāo);
(2)試探究拋物線上是否存在點F,使△FOE≌△FCE.若存在,請直接寫出點F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線經(jīng)過點且與直線交于點.
(1)求點的坐標(biāo).
(2)求直線的表達(dá)式.
(3)若直線與軸、軸分別交于兩點,直線與軸交于點, 求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店今年1月份的銷售額是2萬元,3月份的銷售額是3.38萬元.
(1)求從1月份到3月份,該商店銷售額平均每月的增長率;
(2)如果該商店4月份銷售額增長率保持不變,銷售額能否達(dá)到4.5萬元,若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個質(zhì)點在第一象限及軸、軸上運動, 在第一秒鐘,它從原點運動到,然后接著按圖中箭頭所示方向運動,且每秒移動一個單位,那么第秒時質(zhì)點所在位置的坐標(biāo)是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD中,點O是對角線DB的中點,點P是DB所在直線上的一個動點,PE⊥BC于E,PF⊥DC于F.
(1)當(dāng)點P與點O重合時(如圖①),猜測AP與EF的數(shù)量及位置關(guān)系,并證明你的結(jié)論;
(2)當(dāng)點P在線段DB上(不與點D、O、B重合)時(如圖②),探究(1)中的結(jié)論是否成立?若成立,寫出證明過程;若不成立,請說明理由;
(3)當(dāng)點P在DB的長延長線上時,請將圖③補充完整,并判斷(1)中的結(jié)論是否成立?若成立,直接寫出結(jié)論;若不成立,請寫出相應(yīng)的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某工程隊準(zhǔn)備在山坡(山坡視為直線l)上修一條路,需要測量山坡的坡度,即tanα的值.測量員在山坡P處(不計此人身高)觀察對面山頂上的一座鐵塔,測得塔尖C的仰角為31°,塔底B的仰角為26.6°.已知塔高BC=40米,塔所在的山高OB=240米,OA=300米,圖中的點O、B、C、A、P在同一平面內(nèi).
求:
(1)P到OC的距離.
(2)山坡的坡度tanα.
(參考數(shù)據(jù)sin26.6°≈0.45,tan26.6°≈0.50;sin31°≈0.52,tan31°≈0.60)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上,點A表示1,現(xiàn)將點A沿軸做如下移動,第一次點A向左移動3個單位長度到達(dá)點,第二次將點向右移動6個單位長度到達(dá)點,第三次將點向左移動9個單位長度到達(dá)點,按照這種移動規(guī)律移動下去,第次移動到點,如果點與原點的距離不小于20,那么的最小值是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com