【題目】如圖,已知射線OB平分∠AOC,∠AOC的余角比∠BOC小42°.
(1)求∠AOB的度數(shù):
(2)過點(diǎn)O作射線OD,使得∠AOC=4∠AOD,請(qǐng)你求出∠COD的度數(shù)
(3)在(2)的條件下,畫∠AOD的角平分線OE,則∠BOE= .
【答案】(1)44°;(2)66°或110°;(3)33°或55°
【解析】
(1)設(shè)∠BOC=x,則∠AOC=2x,根據(jù)∠AOC的余角比∠BOC小42°列方程求解即可;
(2)分兩種情況:①當(dāng)射線OD在∠AOC內(nèi)部,②當(dāng)射線OD在∠AOC外部,分別求出∠COD的度數(shù)即可;
(3)根據(jù)(2)的結(jié)論以及角平分線的定義解答即可.
解:(1)由射線OB平分∠AOC可得∠AOC =2∠BOC,∠AOB=∠BOC,
設(shè)∠BOC=x,則∠AOC=2x,
依題意列方程90°﹣2x=x﹣42°,
解得:x=44°,
即∠AOB=44°.
(2)由(1)得,∠AOC=88°,
①當(dāng)射線OD在∠AOC內(nèi)部時(shí),如圖,
∵∠AOC=4∠AOD,∴∠AOD=22°,
∴∠COD=∠AOC﹣∠AOD=66°;
②當(dāng)射線OD在∠AOC外部時(shí),如圖,
由①可知∠AOD=22°,
則∠COD=∠AOC+∠AOD=110°;
故∠COD的度數(shù)為66°或110°;
(3)∵OE平分∠AOD,∴∠AOE=,
當(dāng)射線OD在∠AOC內(nèi)部時(shí),如圖,
∴∠BOE=∠AOB﹣∠AOE=44°﹣11°=33°;
當(dāng)射線OD在∠AOC外部時(shí),如圖,
∴∠BOE=∠AOB+∠AOE=44°+11°=55°.
綜上所述,∠BOE度數(shù)為33°或55°.
故答案為:33°或55°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小李對(duì)某班全體同學(xué)的業(yè)余興趣愛好進(jìn)行了一次調(diào)查,根據(jù)采集到的數(shù)據(jù)繪制了下面的統(tǒng)計(jì)圖表.請(qǐng)據(jù)圖中提供的信息,解答下列問題:
(1)該班共有學(xué)生_____________人;
(2)在圖1中,請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在圖2中,在扇形統(tǒng)計(jì)圖中,“音樂”部分所對(duì)應(yīng)的圓心角的度數(shù)___________度:
(4)求愛好“書畫”的人數(shù)占該班學(xué)生數(shù)的百分?jǐn)?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)
如圖,點(diǎn)E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF與DE交于點(diǎn)O.
(1)求證:AB=DC;
(2)試判斷△OEF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠MON=60°,射線OT是∠MON的平分線,點(diǎn)P是射線OT上的一個(gè)動(dòng)點(diǎn),射線PB交射線ON于點(diǎn)B.
(1)如圖,若射線PB繞點(diǎn)P順時(shí)針旋轉(zhuǎn)120°后與射線OM交于點(diǎn)A,求證:PA=PB;
(2)在(1)的條件下,若點(diǎn)C是AB與OP的交點(diǎn),且滿足,求△POB與△PBC的面積之比;
(3)當(dāng)OB=2時(shí),射線PB繞點(diǎn)P順時(shí)針旋轉(zhuǎn)120°后與直線OM交于點(diǎn)A(點(diǎn)A不與點(diǎn)O重合),直線PA交射線ON于點(diǎn)D,且滿足∠PBD=∠ABO,求OP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下列材料,再解答下列問題:
題:分解因式:
解:將“”看成整體,設(shè),則原式=
再將“”還原,得原式=.
上述解題用到的是“整體思想”,“整體思想”是數(shù)學(xué)解題中常用的一種思想方法,請(qǐng)你仿照上面的方法解答下列問題:
(1)因式分解: ; .
(2)因式分解: ; .
(3)求證:若為正整數(shù),則式子的值一定是某一個(gè)正整數(shù)的平方.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長(zhǎng)方形ABCD中,AB=CD=6cm,BC=10cm,點(diǎn)P從點(diǎn)B出發(fā),以2cm/秒的速度沿BC向點(diǎn)C運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒:
(1)PC=______cm.(用t的代數(shù)式表示)
(2)當(dāng)t為何值時(shí),△ABP≌△DCP?
(3)當(dāng)點(diǎn)P從點(diǎn)B開始運(yùn)動(dòng),同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),以v cm/秒的速度沿CD向點(diǎn)D運(yùn)動(dòng),是否存在這樣v的值,使得△ABP與△PQC全等?若存在,請(qǐng)求出v的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD是BC邊的中線,過點(diǎn)A作BC的平行線,過點(diǎn)B作AD的平行線,兩線交于點(diǎn)E.
(1)求證:四邊形ADBE是矩形;
(2)連接DE,交AB于點(diǎn)O,若BC=8,AO=,求cos∠AED的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)圖象經(jīng)過點(diǎn)A(0,2),且與正比例函數(shù)y=﹣x的圖象交于點(diǎn)B,B點(diǎn)的橫坐標(biāo)是﹣1.
(1)求該一次函數(shù)的解析式:
(2)求一次函數(shù)圖象、正比例函數(shù)圖象與x軸圍成的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).
△ACB和△DCE的頂點(diǎn)都在格點(diǎn)上,ED的延長(zhǎng)線交AB于點(diǎn)F.
(1)求證:△ACB∽△DCE;(2)求證:EF⊥AB.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com