如圖,平面直角坐標(biāo)系中,OB在x軸上,∠ABO=90°,OB=1,OA=2.將△AOB繞點O逆時針旋轉(zhuǎn)到△A′B′O,點A的對應(yīng)點A′落在x軸上,B的對應(yīng)點恰好落在雙曲線數(shù)學(xué)公式(x<0)上,則k=________.


分析:作B′C⊥y軸于點C,首先利用旋轉(zhuǎn)不變形求得OB=OB′=1,∠AOB=∠B′OC,然后在直角三角形OB′C中利用解直角三角形求得B′C和OC的長即可求得點B′的坐標(biāo),從而求得k值.
解答:解:作B′C⊥y軸于點C,
∵將△AOB繞點O逆時針旋轉(zhuǎn)到△A′B′O,點A的對應(yīng)點A′落在x軸上,
∴OB=OB′=1,∠AOB=∠B′OC,
∵OB=1,OA=2,
∴∠AOB=∠B′OC=60°,
∴B′C=OB′×sin30°=,
OC=OB′×cos30°=
∴點B′的坐標(biāo)為(-),
∵B′恰好落在雙曲線(x<0)上,
∴k=-×=-,
故答案為:-
點評:本題考查了反比例函數(shù)的綜合知識、反比例函數(shù)關(guān)系式的求法,旋轉(zhuǎn)的性質(zhì).關(guān)鍵是通過旋轉(zhuǎn)確定雙曲線上點的坐標(biāo).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,平面直角坐標(biāo)系中,O為直角三角形ABC的直角頂點,∠B=30°,銳角頂點A在雙曲線y=
1x
上運動,則B點在函數(shù)解析式
 
上運動.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平面直角坐標(biāo)系中,⊙P與x軸分別交于A、B兩點,點P的坐標(biāo)為(3,-1),AB精英家教網(wǎng)=2
3

(1)求⊙P的半徑.
(2)將⊙P向下平移,求⊙P與x軸相切時平移的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平面直角坐標(biāo)系中,OB在x軸上,∠ABO=90°,點A的坐標(biāo)為(1,2).將△AOB繞點A逆時針旋轉(zhuǎn)90°,則點O的對應(yīng)點C的坐標(biāo)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖:平面直角坐標(biāo)系中,△ABC的三個頂點的坐標(biāo)為A(a,0),B(b,0),C(0,c),且a,b,c滿足
a+2
+|b-2|+(c-b)2=0
.點D為線段OA上一動點,連接CD.
(1)判斷△ABC的形狀并說明理由;
(2)如圖,過點D作CD的垂線,過點B作BC的垂線,兩垂線交于點G,作GH⊥AB于H,求證:
S△CAD
S△DGH
=
AD
GH
;
(3)如圖,若點D到CA、CO的距離相等,E為AO的中點,且EF∥CD交y軸于點F,交CA于M.求
FC+2AE
3AM
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在平面直角坐標(biāo)系中,A點坐標(biāo)為(8,0),B點坐標(biāo)為(0,6)C是線段AB的中點.請問在y軸上是否存在一點P,使得以P、B、C為頂點的三角形與△AOB相似?若存在,求出P點坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案