【題目】如圖,動(dòng)點(diǎn)S從點(diǎn)A出發(fā),沿線段AB運(yùn)動(dòng)至點(diǎn)B后,立即按原路返回,點(diǎn)S在運(yùn)動(dòng)過(guò)程中速度不變,則以點(diǎn)B為圓心,線段BS長(zhǎng)為半徑的圓的面積m與點(diǎn)S的運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系圖象大致為( )
A.
B.
C.
D.
【答案】C
【解析】解:設(shè)線段AB的長(zhǎng)為b,點(diǎn)S的速度為a,
則S=π(b﹣at)2=a2πt2﹣2abπt+b2π=a2π(t﹣ )2 ,
∵a2π>0,
∴在點(diǎn)P從A到B的運(yùn)動(dòng)過(guò)程中,S隨t的增大而減小,此時(shí)對(duì)應(yīng)的函數(shù)圖象開(kāi)口向上,頂點(diǎn)坐標(biāo)為( ,0),
當(dāng)點(diǎn)P從點(diǎn)B向點(diǎn)A運(yùn)動(dòng)時(shí),S隨著t的增大而減小,此時(shí)對(duì)應(yīng)的函數(shù)圖象開(kāi)口向上,頂點(diǎn)坐標(biāo)為( ,0),
故選C.
根據(jù)題意可以得到S與t的函數(shù)解析式,然后根據(jù)t的變化討論S與t的函數(shù)圖象,從而可以解答本題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC,點(diǎn)D在底邊BC上,添加下列條件后,仍無(wú)法判定△ABD≌△ACD的是( )
A. BD=CD B. ∠BAD=∠CAD C. ∠B=∠C D. ∠ADB=∠ADC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料: 如圖1,在平面直角坐標(biāo)系xOy中,直線y1=ax+b與雙曲線y2= 交于A(1,3)和B(﹣3,﹣1)兩點(diǎn).
觀察圖象可知:
①當(dāng)x=﹣3或1時(shí),y1=y2;
②當(dāng)﹣3<x<0或x>1時(shí),y1>y2 , 即通過(guò)觀察函數(shù)的圖象,可以得到不等式ax+b> 的解集.
有這樣一個(gè)問(wèn)題:求不等式x3+4x2﹣x﹣4>0的解集.
某同學(xué)根據(jù)學(xué)習(xí)以上知識(shí)的經(jīng)驗(yàn),對(duì)求不等式x3+4x2﹣x﹣4>0的解集進(jìn)行了探究.
下面是他的探究過(guò)程,請(qǐng)將探究過(guò)程補(bǔ)充完整:
將不等式按條件進(jìn)行轉(zhuǎn)化:
當(dāng)x=0時(shí),原不等式不成立;
當(dāng)x>0時(shí),原不等式可以轉(zhuǎn)化為x2+4x﹣1> ;
當(dāng)x<0時(shí),原不等式可以轉(zhuǎn)化為x2+4x﹣1< ;
(1)構(gòu)造函數(shù),畫(huà)出圖象 設(shè)y3=x2+4x﹣1,y4= ,在同一坐標(biāo)系中分別畫(huà)出這兩個(gè)函數(shù)的圖象.
雙曲線y4= 如圖2所示,請(qǐng)?jiān)诖俗鴺?biāo)系中畫(huà)出拋物線y3=x2+4x﹣1;(不用列表)
(2)確定兩個(gè)函數(shù)圖象公共點(diǎn)的橫坐標(biāo) 觀察所畫(huà)兩個(gè)函數(shù)的圖象,猜想并通過(guò)代入函數(shù)解析式驗(yàn)證可知:滿足y3=y4的所有x的值為;
(3)借助圖象,寫(xiě)出解集 結(jié)合(1)的討論結(jié)果,觀察兩個(gè)函數(shù)的圖象可知:不等式x3+4x2﹣x﹣4>0的解集為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,C為半圓上一動(dòng)點(diǎn),過(guò)點(diǎn)C作⊙O的切線l的垂線BD,垂足為D,BD與⊙O交于點(diǎn)E,連接OC,CE,AE,AE交OC于點(diǎn)F.
(1)求證:△CDE≌△EFC;
(2)若AB=4,連接AC. ①當(dāng)AC=時(shí),四邊形OBEC為菱形;
②當(dāng)AC=時(shí),四邊形EDCF為正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果店購(gòu)買(mǎi)一批時(shí)令水果,在20天內(nèi)銷(xiāo)售完畢,店主將本次此銷(xiāo)售數(shù)據(jù)繪制成函數(shù)圖象,如圖①,日銷(xiāo)售量y(千克)與銷(xiāo)售時(shí)間x(天)之間的函數(shù)關(guān)系;如圖②,銷(xiāo)售單價(jià)p(元/千克)與銷(xiāo)售時(shí)間x(天)之間的函數(shù)關(guān)系式.
(1)求y關(guān)于x和p關(guān)于x的函數(shù)關(guān)系式;
(2)若日銷(xiāo)售量不低于36千克的時(shí)間段為“最佳銷(xiāo)售期”,則此次銷(xiāo)售過(guò)程中“最佳銷(xiāo)售期”共有多少天?在此期間銷(xiāo)售金額最高是第幾天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以每秒cm的速度向終點(diǎn)B運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)沿BC方向以每秒1cm的速度向終點(diǎn)C運(yùn)動(dòng),將△PQC沿BC翻折,點(diǎn)P的對(duì)應(yīng)點(diǎn)為點(diǎn)P′,設(shè)Q點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒,若四邊形QPCP′為菱形,則t的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】鄭州地鐵1號(hào)線在2013年12月28日通車(chē)之前,為了解市民對(duì)地鐵票的定價(jià)意向,市物價(jià)局向社會(huì)公開(kāi)征集定價(jià)意見(jiàn).某學(xué)校課外小組也開(kāi)展了“你認(rèn)為鄭州地鐵起步價(jià)定為多少合適?”的問(wèn)卷調(diào)查,征求市民的意見(jiàn),并將某社區(qū)市民的問(wèn)卷調(diào)查結(jié)果整理后制成了如下統(tǒng)計(jì)圖: 根據(jù)統(tǒng)計(jì)圖解答:
(1)同學(xué)們一共隨機(jī)調(diào)查了人;
(2)請(qǐng)你把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)假定該社區(qū)有1萬(wàn)人,請(qǐng)估計(jì)該社區(qū)支持“起步價(jià)為3元”的市民大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某容器由A、B、C三個(gè)連通長(zhǎng)方體組成,其中A、B、C的底面積分別為25cm2、10cm2、5cm2,C的容積是整個(gè)容器容積的(容器各面的厚度忽略不計(jì)),A、B的總高度為12厘米.現(xiàn)以均勻的速度(單位:cm3/min)向容器內(nèi)注水,直到注滿為止.已知單獨(dú)注滿A、B分別需要的時(shí)間為10分鐘、8分鐘.
(1)求注滿整個(gè)容器所需的總時(shí)間;
(2)設(shè)容器A的高度為xcm,則容器B的高度為 cm;
(3)求容器A的高度和注水的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O是直線AB上一點(diǎn),AOD=120, AOC=90,OE平分BOD,則圖中彼此互補(bǔ)的角共有( )
A. 4對(duì) B. 5對(duì) C. 6對(duì) D. 7對(duì)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com