【題目】某學(xué)校為了豐富學(xué)生課余生活,開展了“第二課堂”活動,推出了以下四種選修課程:.繪畫;.唱歌;.跳舞;.演講;.書法.學(xué)校規(guī)定:每個學(xué)生都必須報(bào)名且只能選擇其中的一個課程.學(xué)校隨機(jī)抽查了部分學(xué)生,對他們選擇的課程情況進(jìn)行了統(tǒng)計(jì),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.
請結(jié)合統(tǒng)計(jì)圖中的信息解決下列問題:
(1)這次抽查的學(xué)生人數(shù)是多少人?
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)求扇形統(tǒng)計(jì)圖中課程所對應(yīng)扇形的圓心角的度數(shù).
(4)如果該校共有1200名學(xué)生,請你估計(jì)該校選擇課程的學(xué)生約有多少人.
【答案】(1)100人;(2)20人,詳見解析;(3);(4)約有300人
【解析】
(1)由D課程的人數(shù)及其所占百分比可得總?cè)藬?shù);
(2)根據(jù)各課程人數(shù)之和等于總?cè)藬?shù)求出C課程的人數(shù),從而補(bǔ)全圖形;
(3)用360°乘以課程E人數(shù)所占比例即可得;
(4)用總?cè)藬?shù)乘以樣本中課程D人數(shù)所占比例即可得.
解:(1)這次調(diào)查的學(xué)生人數(shù)是(人).
(2)(人),補(bǔ)全條形統(tǒng)計(jì)圖如圖所示.
(3)課程所對應(yīng)扇形的圓心角的度數(shù)是.
(4)(人),
估計(jì)該校1200名學(xué)生中報(bào)課程的學(xué)生約有300人.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公路隧道橫截面為拋物線,其最大高度為6米,底部寬度OM為12米. 現(xiàn)以O點(diǎn)為原點(diǎn),OM所在直線為x軸建立直角坐標(biāo)系.
(1)直接寫出點(diǎn)M及拋物線頂點(diǎn)P的坐標(biāo);
(2)求這條拋物線的解析式;
(3)若要搭建一個矩形“支撐架”AD- DC- CB,使C、D點(diǎn)在拋物線上,A、B點(diǎn)在地面OM上,則這個“支撐架”總長的最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形EFGH的頂點(diǎn)在邊長為2的正方形的邊上.若設(shè)AE=x,正方形EFGH的面積為y,則y與x的函數(shù)關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】旋轉(zhuǎn)變換是解決數(shù)學(xué)問題中一種重要的思想方法,通過旋轉(zhuǎn)變換可以將分散的條件集中到一起,從而方便解決問題.
已知,△ABC中,AB=AC,∠BAC=α,點(diǎn)D、E在邊BC上,且∠DAE=α.
(1)如圖1,當(dāng)α=60°時,將△AEC繞點(diǎn)A順時針旋轉(zhuǎn)60°到△AFB的位置,連接DF,
①求∠DAF的度數(shù);
②求證:△ADE≌△ADF;
(2)如圖2,當(dāng)α=90°時,猜想BD、DE、CE的數(shù)量關(guān)系,并說明理由;
(3)如圖3,當(dāng)α=120°,BD=4,CE=5時,請直接寫出DE的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=BC,以AB為直徑的半圓分別交AC、BC于點(diǎn)D、E兩點(diǎn),BF與⊙O相切于點(diǎn)B,交AC的延長線于點(diǎn)F.
(1)求證:D是AC的中點(diǎn);
(2)若AB=12,sin∠CAE=,求CF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):如圖1,在平面直角坐標(biāo)系中,A點(diǎn)的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(0,2),連接AB,點(diǎn)C是AB的中點(diǎn),點(diǎn)Q是線段AO上的動點(diǎn),連接OC、CQ,以BQ為邊構(gòu)造等邊△BPQ,連接OP、PQ.填空:
①OP與CQ的大小關(guān)系是 .
②OP的最小值為 .
(2)解決問題:在(1)的條件下,點(diǎn)Q運(yùn)動的過程中當(dāng)△ACQ為直角三角形時,求OP的長?
(3)拓展探究:如圖2,當(dāng)點(diǎn)B為直線x=﹣1上一動點(diǎn),點(diǎn)A(2,0),連接AB,以AB為一邊向下作等邊△ABP,連接OP,請直接寫出OP的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)y=(a>0,a為常數(shù))和y=在第一象限內(nèi)的圖象如圖所示,點(diǎn)M在y=的圖象上,MC⊥x軸于點(diǎn)C,交y=的圖象于點(diǎn)A;MD⊥y軸于點(diǎn)D,交y=的圖象于點(diǎn)B,當(dāng)點(diǎn)M在y=的圖象上運(yùn)動時,以下結(jié)論:①S△ODB=S△OCA;②四邊形OAMB的面積不變;③當(dāng)點(diǎn)A是MC的中點(diǎn)時,則點(diǎn)B是MD的中點(diǎn).其中正確結(jié)論是( )
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:在平面直角坐標(biāo)系中,若兩點(diǎn)P、Q的坐標(biāo)分別是P(x1,y1)、
Q(x2,y2),則P、Q這兩點(diǎn)間的距離為|PQ|=.如P(1,2),Q(3,4),則|PQ|==2.
對于某種幾何圖形給出如下定義:符合一定條件的動點(diǎn)形成的圖形,叫做符合這個條件的點(diǎn)的軌跡.如平面內(nèi)到線段兩個端點(diǎn)距離相等的點(diǎn)的軌跡是這條線段的垂直平分線.
解決問題:如圖,已知在平面直角坐標(biāo)系xOy中,直線y=kx+交y軸于點(diǎn)A,點(diǎn)A關(guān)于x軸的對稱點(diǎn)為點(diǎn)B,過點(diǎn)B作直線l平行于x軸.
(1)到點(diǎn)A的距離等于線段AB長度的點(diǎn)的軌跡是 ;
(2)若動點(diǎn)C(x,y)滿足到直線l的距離等于線段CA的長度,求動點(diǎn)C軌跡的函數(shù)表達(dá)式;
問題拓展:(3)若(2)中的動點(diǎn)C的軌跡與直線y=kx+交于E、F兩點(diǎn),分別過E、F作直線l的垂線,垂足分別是M、N,求證:①EF是△AMN外接圓的切線;②為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com