科目: 來源: 題型:
如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)的圖象與軸交于(-1,0)、(3,0)兩點(diǎn), 頂點(diǎn)為.
(1) 求此二次函數(shù)解析式;
(2) 點(diǎn)為點(diǎn)關(guān)于x軸的對稱點(diǎn),過點(diǎn)作直線:交BD于點(diǎn)E,過點(diǎn)作直線∥交直線于點(diǎn).問:在四邊形ABKD的內(nèi)部是否存在點(diǎn)P,使得它到四邊形ABKD四邊的距離都相等,若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3) 在(2)的條件下,若、分別為直線和直線上的兩個動點(diǎn),連結(jié)、、,求和的最小值.
查看答案和解析>>
科目: 來源: 題型:
在Rt△ABC中,∠ACB=90°,tan∠BAC=. 點(diǎn)D在邊AC上(不與A,C重合),連結(jié)BD,F為BD中點(diǎn).
(1)若過點(diǎn)D作DE⊥AB于E,連結(jié)CF、EF、CE,如圖1. 設(shè),則k = ;
(2)若將圖1中的△ADE繞點(diǎn)A旋轉(zhuǎn),使得D、E、B三點(diǎn)共線,點(diǎn)F仍為BD中點(diǎn),如圖2所示.求證:BE-DE=2CF;
(3)若BC=6,點(diǎn)D在邊AC的三等分點(diǎn)處,將線段AD繞點(diǎn)A旋轉(zhuǎn),點(diǎn)F始終為BD中點(diǎn),求線段CF長度的最大值.
查看答案和解析>>
科目: 來源: 題型:
已知,二次函數(shù)的圖象如圖所示.
(1)若二次函數(shù)的對稱軸方程為,求二次函數(shù)的解析式;
(2)已知一次函數(shù),點(diǎn)是x軸上的一個動點(diǎn).若在(1)的條件下,過點(diǎn)P垂直于x軸的直線交這個一次函數(shù)的圖象于點(diǎn)M,交二次函數(shù)的圖象于點(diǎn)N.若只有當(dāng)1<m<時,點(diǎn)M位于點(diǎn)N的上方,求這個一次函數(shù)的解析式;
(3)若一元二次方程有實(shí)數(shù)根,請你構(gòu)造恰當(dāng)?shù)暮瘮?shù),根據(jù)圖象直接寫出的最大值.
查看答案和解析>>
科目: 來源: 題型:閱讀理解
閱讀下面材料:
問題:如圖①,在△ABC中, D是BC邊上的一點(diǎn),若∠BAD=∠C=2∠DAC=45°,DC=2.求BD的長.
小明同學(xué)的解題思路是:利用軸對稱,把△ADC進(jìn)行翻折,再經(jīng)過推理、計(jì)算使問題得到解決.
(1)請你回答:圖中BD的長為 ;
(2)參考小明的思路,探究并解答問題:如圖②,在△ABC中,D是BC邊上的一點(diǎn),若∠BAD=∠C=2∠DAC=30°,DC=2,求BD和AB的長.
圖① 圖②
查看答案和解析>>
科目: 來源: 題型:
在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(1,6),B(a,3)兩點(diǎn) .
(1)求k, k的值;
(2)如圖,點(diǎn)D在x軸上,在梯形OBCD中,BC∥OD,OB=DC,過點(diǎn)C作CE⊥OD于點(diǎn)E,CE和反比例函數(shù)的圖象交于點(diǎn)P,當(dāng)梯形OBCD的面積為18時,求PE:PC的值.
查看答案和解析>>
科目: 來源: 題型:
為了了解某校九年級男生的體能情況,體育老師隨機(jī)抽取部分男生進(jìn)行引體向上測試,并對成績進(jìn)行了統(tǒng)計(jì),繪制成圖1和圖2尚不完整的統(tǒng)計(jì)圖.
(1)本次抽測的男生有 人,抽測成績的眾數(shù)是 ;
(2)請你將圖2的統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若規(guī)定引體向上5次以上(含5次)為體能達(dá)標(biāo),則該校350名九年級男生中,估計(jì)有多少人體能達(dá)標(biāo)?
查看答案和解析>>
科目: 來源: 題型:
已知:如圖, BD是半圓O的直徑,A是BD延長線上的一點(diǎn),BC⊥AE,交AE的延長線于點(diǎn)C, 交半圓O于點(diǎn)E,且E為的中點(diǎn).
(1)求證:AC是半圓O的切線;
(2)若,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com