相關(guān)習(xí)題
 0  141516  141524  141530  141534  141540  141542  141546  141552  141554  141560  141566  141570  141572  141576  141582  141584  141590  141594  141596  141600  141602  141606  141608  141610  141611  141612  141614  141615  141616  141618  141620  141624  141626  141630  141632  141636  141642  141644  141650  141654  141656  141660  141666  141672  141674  141680  141684  141686  141692  141696  141702  141710  366461 

科目: 來源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(44):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

已知四邊形ABCD是矩形,BC>AB,直線MN分別與AB,BC交于E,F(xiàn)兩點,P為對角線AC上一動點(P不與A,C重合).
(1)當(dāng)點E,F(xiàn)分別為AB,BC的中點時,(如圖1)問點P在AC上運(yùn)動時,點P,E,F(xiàn)能否構(gòu)成直角三角形?若能,共有幾個?請在圖中畫出所有滿足條件的三角形.
(2)若AB=3,BC=4,P為AC的中點,當(dāng)直線MN的移動時,始終保持MN∥AC,(如圖2)求△PEF的面積S△PEF與FC的長x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目: 來源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(44):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

如圖所示,在平面直角坐標(biāo)系xOy中,正方形OABC的邊長為2cm,點A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過點A、B,且12a+5c=0.
(1)求拋物線的解析式;
(2)如果點P由點A開始沿AB邊以2cm/s的速度向點B移動,同時點Q由點B開始沿BC邊以1cm/s的速度向點C移動.
①移動開始后第t秒時,設(shè)S=PQ2(cm2),試寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;
②當(dāng)S取得最小值時,在拋物線上是否存在點R,使得以P、B、Q、R為頂點的四邊形是平行四邊形?如果存在,求出R點的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目: 來源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(44):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

對于任意兩個二次函數(shù):y1=a1x2+b1x+c1,y2=a2x2+b2x+c2,(a1a2≠0),當(dāng)|a1|=|a2|時,我們稱這兩個二次函數(shù)的圖象為全等拋物線.
現(xiàn)有△ABM,A(-1,0),B(1,0).記過三點的二次函數(shù)拋物線為“C□□□”(“□□□”中填寫相應(yīng)三個點的字母)
(1)若已知M(0,1),△ABM≌△ABN(0,-1).請通過計算判斷CABM與CABN是否為全等拋物線;
(2)在圖2中,以A、B、M三點為頂點,畫出平行四邊形.
①若已知M(0,n),求拋物線CABM的解析式,并直接寫出所有過平行四邊形中三個頂點且能與CABM全等的拋物線解析式.
②若已知M(m,n),當(dāng)m,n滿足什么條件時,存在拋物線CABM根據(jù)以上的探究結(jié)果,判斷是否存在過平行四邊形中三個頂點且能與CABM全等的拋物線?若存在,請列出所有滿足條件的拋物線“C□□□”;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(44):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

已知:在四邊形ABCD中,AB=1,E,F(xiàn),G,H分別是AB,BC,CD,DA上的點,且AE=BF=CG=DH.設(shè)四邊形EFGH的面積為S,AE=x(0≤x≤1).
(1)如圖1,當(dāng)四邊形ABCD為正方形時,
①求S關(guān)于x的函數(shù)解析式,并在圖2中畫出函數(shù)的草圖;
②當(dāng)x為何值時,S=?
(2)如圖3,當(dāng)四邊形ABCD為菱形,且∠A=30°時,四邊形EFGH的面積能否等于?若能,求出相應(yīng)x的值;若不能,請說明理由.

查看答案和解析>>

科目: 來源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(44):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

已知:在四邊形ABCD中,AB=1,E、F、G、H分別時AB、BC、CD、DA上的點,且AE=BF=CG=DH.設(shè)四邊形EFGH的面積為S,AE=x(0≤x≤1).
(1)如圖①,當(dāng)四邊形ABCD為正方形時,
①求S關(guān)于x的函數(shù)解析式,并求S的最小值S
②在圖②中畫出①中函數(shù)的草圖,并估計S=0.6時x的近似值(精確到0.01);
(2)如圖③,當(dāng)四邊形ABCD為菱形,且∠A=30°時,四邊形EFGH的面積是否存在最小值?若存在,求出最小值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(44):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

拋物線y=-x2+2bx-(2b-1)(b為常數(shù))與x軸相交于A(x1,0),B(x2,0)(x2>x1>0)兩點,設(shè)OA•OB=3(O為坐標(biāo)系原點).
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點為C,拋物線的對稱軸交x軸于點D,求證:點D是△ABC的外心;
(3)在拋物線上是否存在點P,使S△ABP=1?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(44):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

在矩形ABCD中,AB=4,BC=2,以A為坐標(biāo)原點,AB所在的直線為x軸,建立直角坐標(biāo)系.然后將矩形ABCD繞點A逆時針旋轉(zhuǎn),使點B落在y軸的E點上,則C和D點依次落在第二象限的F點上和x軸的G點上(如圖).
(1)求經(jīng)過B,E,G三點的二次函數(shù)解析式;
(2)設(shè)直線EF與(1)的二次函數(shù)圖象相交于另一點H,試求四邊形EGBH的周長.
(3)設(shè)P為(1)的二次函數(shù)圖象上的一點,BP∥EG,求P點的坐標(biāo).

查看答案和解析>>

科目: 來源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(44):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

如圖,直線y=-+8與x軸、y軸分別交于點A和B,M是OB上的一點,若將△ABM沿AM折疊,點B恰好落在x軸上的點B′處.
(1)試確定直線AM的函數(shù)關(guān)系式;
(2)求過A、B、M三點的拋物線的函數(shù)關(guān)系式.

查看答案和解析>>

科目: 來源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(44):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

如圖,點P在y軸上,⊙P交x軸于A,B兩點,連接BP并延長交⊙P于C,過點C的直線y=2x+b交x軸于D,且⊙P的半徑為,AB=4.
(1)求點B,P,C的坐標(biāo);
(2)求證:CD是⊙P的切線;
(3)若二次函數(shù)y=-x2+(a+1)x+6的圖象經(jīng)過點B,求這個二次函數(shù)的解析式,并寫出使二次函數(shù)值小于一次函數(shù)y=2x+b值的x的取值范圍.

查看答案和解析>>

科目: 來源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(44):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

如圖,在△ABC中,AB=AC=5,以AB為直徑的⊙P交BC于H.點A,B在x軸上,點H在y軸上,B點的坐標(biāo)為(1,0).
(1)求點A,H,C的坐標(biāo);
(2)過H點作AC的垂線交AC于E,交x軸于F,求證:EF是⊙P的切線;
(3)求經(jīng)過A,O兩點且頂點到x軸的距離等于4的拋物線解析式.

查看答案和解析>>

同步練習(xí)冊答案