相關(guān)習(xí)題
 0  216547  216555  216561  216565  216571  216573  216577  216583  216585  216591  216597  216601  216603  216607  216613  216615  216621  216625  216627  216631  216633  216637  216639  216641  216642  216643  216645  216646  216647  216649  216651  216655  216657  216661  216663  216667  216673  216675  216681  216685  216687  216691  216697  216703  216705  216711  216715  216717  216723  216727  216733  216741  366461 

科目: 來源:2008年山東省濟(jì)南市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:059

已知:拋物線y=ax2+bx+c(a≠0),頂點(diǎn)C(1,-3),與x軸交于A、B兩點(diǎn),A(-1,0).

(1)求這條拋物線的解析式.

(2)如圖,以AB為直徑作圓,與拋物線交于點(diǎn)D,與拋物線對稱軸交于點(diǎn)E,依次連接A、D、B、E,點(diǎn)P為線段AB上一個(gè)動(dòng)點(diǎn)(P與A、B兩點(diǎn)不重合),過點(diǎn)P作PM⊥AE于M,PN⊥DB于N,請判斷是否為定值?若是,請求出此定值;若不是,請說明理由.

(3)在(2)的條件下,若點(diǎn)S是線段EP上一點(diǎn),過點(diǎn)S作FG⊥EP,F(xiàn)G分別與邊AE、BE相交于點(diǎn)F,G(F與A、E不重合,G與E、B不重合),請判斷是否成立.若成立,請給出證明;若不成立,請說明理由.

查看答案和解析>>

科目: 來源:2008年山東省威海市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:059

如圖,在梯形ABCD中,ABCD,AB=7,CD=1,ADBC=5.點(diǎn)M,N分別在邊ADBC上運(yùn)動(dòng),并保持MNABMEAB,NFAB,垂足分別為E,F

(1)求梯形ABCD的面積;

(2)求四邊形MEFN面積的最大值.

(3)試判斷四邊形MEFN能否為正方形,若能,求出正方形MEFN的面積;若不能,請說明理由.

查看答案和解析>>

科目: 來源:2008年山東省初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:059

在△ABC中,∠A=90°,AB=4,AC=3,MAB上的動(dòng)點(diǎn)(不與A,B重合),過M點(diǎn)作MNBCAC于點(diǎn)N.以MN為直徑作⊙O,并在⊙O內(nèi)作內(nèi)接矩形AMPN.令AMx

(1)用含x的代數(shù)式表示△MNP的面積S

(2)當(dāng)x為何值時(shí),⊙O與直線BC相切?

(3)在動(dòng)點(diǎn)M的運(yùn)動(dòng)過程中,記△MNP與梯形BCNM重合的面積為y,試求y關(guān)于x的函數(shù)表達(dá)式,并求x為何值時(shí),y的值最大,最大值是多少?

查看答案和解析>>

科目: 來源:2008年山東濟(jì)寧市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:059

△ABC中,∠C=90°,∠A=60°,AC=2 cm.長為1 cm的線段MN在△ABC的邊AB上沿AB方向以1 cm/s的速度向點(diǎn)B運(yùn)動(dòng)(運(yùn)動(dòng)前點(diǎn)M與點(diǎn)A重合).過M,N分別作AB的垂線交直角邊于P,Q兩點(diǎn),線段MN運(yùn)動(dòng)的時(shí)間為ts.

(1)若△AMP的面積為y,寫出y與t的函數(shù)關(guān)系式(寫出自變量t的取值范圍);

(2)線段MN運(yùn)動(dòng)過程中,四邊形MNQP有可能成為矩形嗎?若有可能,求出此時(shí)t的值;若不可能,說明理由;

(3)t為何值時(shí),以C,P,Q為頂點(diǎn)的三角形與△ABC相似?

查看答案和解析>>

科目: 來源:2008年天津市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:059

已知拋物線y=3ax2+2bx+c,

(Ⅰ)若a=b=1,c=-1,求該拋物線與x軸公共點(diǎn)的坐標(biāo);

(Ⅱ)若a=b=1,且當(dāng)-1<x<1時(shí),拋物線與x軸有且只有一個(gè)公共點(diǎn),求c的取值范圍;

(Ⅲ)若a+b+c=0,且x1=0時(shí),對應(yīng)的y1>0;x2=1時(shí),對應(yīng)的y2>0,試判斷當(dāng)0<x<1時(shí),拋物線與x軸是否有公共點(diǎn)?若有,請證明你的結(jié)論;若沒有,闡述理由.

查看答案和解析>>

科目: 來源:2008年天津市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:059

已知Rt△ABC中,∠ACB=90°,CA=CB,有一個(gè)圓心角為45°,半徑的長等于CA的扇形CEF繞點(diǎn)C旋轉(zhuǎn),且直線CE,CF分別與直線AB交于點(diǎn)MN

(Ⅰ)當(dāng)扇形CEF繞點(diǎn)C在∠ACB的內(nèi)部旋轉(zhuǎn)時(shí),如圖①,求證:MN2=AM2+BN2

思路點(diǎn)撥:考慮MN2=AM2+BN2符合勾股定理的形式,需轉(zhuǎn)化為在直角三角形中解決.可將△ACM沿直線CE對折,得△DCM,連DN,只需證DN=BN,∠MDN=90°就可以了.

請你完成證明過程:

(Ⅱ)當(dāng)扇形CEF繞點(diǎn)C旋轉(zhuǎn)至圖②的位置時(shí),關(guān)系式MN2=AM2+BN2是否仍然成立?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

科目: 來源:2008年四川省資陽市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷及答案 題型:059

如圖,已知點(diǎn)A的坐標(biāo)是(-1,0),點(diǎn)B的坐標(biāo)是(9,0),以AB為直徑作⊙,交y軸的負(fù)半軸于點(diǎn)C,連接AC、BC,過A、B、C三點(diǎn)作拋物線.

(1)求拋物線的解析式;

(2)點(diǎn)E是AC延長線上一點(diǎn),∠BCE的平分線CD交⊙于點(diǎn)D,連結(jié)BD,求直線BD的解析式;

(3)在(2)的條件下,拋物線上是否存在點(diǎn)P,使得∠PDB=∠CBD?如果存在,請求出點(diǎn)P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目: 來源:2008年四川省資陽市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷及答案 題型:059

閱讀下列材料,按要求解答問題:

如圖1,在ΔABC中,∠A=2∠B,且∠A=60°.小明通過以下計(jì)算:由題意,∠B=30°,∠C=90°,c=2b,a=b,得a2-b2=(b)2-b2=2b2=b·c.即a2-b2=bc.

于是,小明猜測:對于任意的ΔABC,當(dāng)∠A=2∠B時(shí),關(guān)系式a2-b2=bc都成立.

(1)如圖2,請你用以上小明的方法,對等腰直角三角形進(jìn)行驗(yàn)證,判斷小明的猜測是否正確,并寫出驗(yàn)證過程;

(2)如圖3,你認(rèn)為小明的猜想是否正確,若認(rèn)為正確,請你證明;否則,請說明理由;

(3)若一個(gè)三角形的三邊長恰為三個(gè)連續(xù)偶數(shù),且∠A=2∠B,請直接寫出這個(gè)三角形三邊的長,不必說明理由.

查看答案和解析>>

科目: 來源:2008年四川省綿陽市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:059

如圖,矩形ABCD中,AB=8,BC=10,點(diǎn)P在矩形的邊DC上由DC運(yùn)動(dòng).沿直線AP翻折△ADP,形成如下四種情形.設(shè)DPx,△ADP和矩形重疊部分(陰影)的面積為y

(1)如圖丁,當(dāng)點(diǎn)P運(yùn)動(dòng)到與C重合時(shí),求重疊部分的面積y;

(2)如圖乙,當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),翻折△ADP后,點(diǎn)D恰好落在BC邊上?這時(shí)重疊部分的面積y等于多少?

(3)閱讀材料:

已知銳角α≠45°,tan2α是角2α的正切值,它可以用角α的正切值tanα來表示,即(α≠45°).

根據(jù)上述閱讀材料,求出用x表示y的解析式,并指出x的取值范圍.(提示:在圖丙中可設(shè)∠DAPα)

查看答案和解析>>

科目: 來源:2008年四川省廣安市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:059

如圖,已知拋物線y=x2+bx+c經(jīng)過點(diǎn)(1,-5)和(-2,4)

(1)求這條拋物線的解析式.

(2)設(shè)此拋物線與直線y=x相交于點(diǎn)A,B(點(diǎn)B在點(diǎn)A的右側(cè)),平行于y軸的直線與拋物線交于點(diǎn)M,與直線y=x交于點(diǎn)N,交x軸于點(diǎn)P,求線段MN的長(用含m的代數(shù)式表示).

(3)在條件(2)的情況下,連接OM、BM,是否存在m的值,使△BOM的面積S最大?若存在,請求出m的值,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案