科目: 來源: 題型:解答題
如圖,在平面直角坐標系中,拋物線y=ax2+bx﹣2 與x軸交于點A(﹣1,0)、B(4,0).點M、N在x軸上,點N在點M右側(cè),MN=2.以MN為直角邊向上作等腰直角三角形CMN,∠CMN=90°.設(shè)點M的橫坐標為m.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式.
(2)求點C在這條拋物線上時m的值.
(3)將線段CN繞點N逆時針旋轉(zhuǎn)90°后,得到對應(yīng)線段DN.
①當點D在這條拋物線的對稱軸上時,求點D的坐標.
②以DN為直角邊作等腰直角三角形DNE,當點E在這條拋物線的對稱軸上時,直接寫出所有符合條件的m值.
(參考公式:拋物線y=ax2+bx+c(a≠0)的頂點坐標為)
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,在平面直角坐標系xOy中,將拋物線C1:y=x2+3先向右平移1個單位,再向下平移7個單位得到拋物線C2。C2的圖象與x軸交于A、B兩點(點A在點B的左側(cè))。
(1)求拋物線C2的解析式;
(2)若拋物線C2的對稱軸與x軸交于點C,與拋物線C2交于點D,與拋物線C1交于點E,連結(jié)AD、DB、BE、EA,請證明四邊形ADBE是菱形,并計算它的面積;
(3)若點F為對稱軸DE上任意一點,在拋物線C2上是否存在這樣的點G,使以O(shè)、B、F、G四點為頂點的四邊形是平行四邊形,如果存在,請求出點G的坐標,如果不存在,請說明理由。
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,△ABC的頂點坐標分別為A(﹣6,0),B(4,0),C(0,8),把△ABC沿直線BC翻折,點A的對應(yīng)點為D,拋物線y=ax2﹣10ax+c經(jīng)過點C,頂點M在直線BC上.
(1)證明四邊形ABCD是菱形,并求點D的坐標;
(2)求拋物線的對稱軸和函數(shù)表達式;
(3)在拋物線上是否存在點P,使得△PBD與△PCD的面積相等?若存在,直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖①,AB是半圓O的直徑,以O(shè)A為直徑作半圓C,P是半圓C上的一個動點(P與點A,O不重合),AP的延長線交半圓O于點D,其中OA=4.
(1)判斷線段AP與PD的大小關(guān)系,并說明理由;
(2)連接OD,當OD與半圓C相切時,求的長;
(3)過點D作DE⊥AB,垂足為E(如圖②),設(shè)AP=x,OE=y,求y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍.
查看答案和解析>>
科目: 來源: 題型:解答題
拋物線y=﹣x2平移后的位置如圖所示,點A,B坐標分別為(﹣1,0)、(3,0),設(shè)平移后的拋物線與y軸交于點C,其頂點為D.
(1)求平移后的拋物線的解析式和點D的坐標;
(2)∠ACB和∠ABD是否相等?請證明你的結(jié)論;
(3)點P在平移后的拋物線的對稱軸上,且△CDP與△ABC相似,求點P的坐標.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,在平面直角坐標系xOy中,拋物線y=ax2+bx+c交y軸于點C(0,4),對稱軸x=2與x軸交于點D,頂點為M,且DM=OC+OD.
(1)求該拋物線的解析式;
(2)設(shè)點P(x,y)是第一象限內(nèi)該拋物線上的一個動點,△PCD的面積為S,求S關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)在(2)的條件下,若經(jīng)過點P的直線PE與y軸交于點E,是否存在以O(shè)、P、E為頂點的三角形與△OPD全等?若存在,請求出直線PE的解析式;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
已知拋物線的頂點為(0,4)且與x軸交于(﹣2,0),(2,0).
(1)直接寫出拋物線解析式;
(2)如圖,將拋物線向右平移k個單位,設(shè)平移后拋物線的頂點為D,與x軸的交點為A、B,與原拋物線的交點為P.
①當直線OD與以AB為直徑的圓相切于E時,求此時k的值;
②是否存在這樣的k值,使得點O、P、D三點恰好在同一條直線上?若存在,求出k值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
直線與x、y軸分別交于點A、C.拋物線的圖象經(jīng)過A、C和點B(1,0).
(1)求拋物線的解析式;
(2)在直線AC上方的拋物線上有一動點D,當D與直線AC的距離DE最大時,求出點D的坐標,并求出最大距離是多少?
查看答案和解析>>
科目: 來源: 題型:解答題
已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(1,0),(5,0),(3,﹣4).
(1)求該二次函數(shù)的解析式;
(2)當y>﹣3,寫出x的取值范圍;
(3)A、B為直線y=﹣2x﹣6上兩動點,且距離為2,點C為二次函數(shù)圖象上的動點,當點C運動到何處時△ABC的面積最。壳蟪龃藭r點C的坐標及△ABC面積的最小值.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,拋物線y=ax2+c(a≠0)經(jīng)過C(2,0),D(0,﹣1)兩點,并與直線y=kx交于A、B兩點,直線l過點E(0,﹣2)且平行于x軸,過A、B兩點分別作直線l的垂線,垂足分別為點M、N.
(1)求此拋物線的解析式;
(2)求證:AO=AM;
(3)探究:
①當k=0時,直線y=kx與x軸重合,求出此時的值;
②試說明無論k取何值,的值都等于同一個常數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com