通過類比聯(lián)想、引申拓展研究典型題目,可達(dá)到解一題知一類的目的.
(1)下面是一個案例,請補(bǔ)充完整;
如圖1,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則 EF=BE+DF,理由如下:
∵AB=AD,∴把△ABE繞點(diǎn)A逆時針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合.
∵∠ADC=∠B=∠ADG=90°,∴∠FDG=180°,點(diǎn)F、D、G共線.
由旋轉(zhuǎn)得:△ABE≌△ADG∴AE=AG,BE=DG,∠BAE=∠DAG
而∠BAE+∠DAF=∠BAD-∠EAF=90°-45°=45°∴∠DAG+∠DAF=45° 即∠FAG=45°
∴∠EAF=∠FAG
根據(jù)
(填三角形全等的方法),證得
≌△AFG,
∴EF=FG
又∵FG=DG+DF
∴EF=DG+DF=BE+DF.
(2)類比引申
如圖2,四邊形ABCD中,AB=AD,∠BAD=90°點(diǎn)E、F分別在邊BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿足等量關(guān)系
時,仍有EF=BE+DF.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E均在邊BC上,且∠DAE=45°.猜想BD、DE、EC應(yīng)滿足的等量關(guān)系,并寫出推理過程.