閱讀下列材料:
我們知道|x|的幾何意義是在數(shù)軸上數(shù)x對應(yīng)的點與原點的距離;即|x|=|x-0|,也就是說,|x|表示在數(shù)軸上數(shù)x與數(shù)0對應(yīng)點之間的距離;這個結(jié)論可以推廣為|x
1-x
2|表示在數(shù)軸上x
1,x
2對應(yīng)點之間的距離;
例1、解方程|x|=2,容易看出,在數(shù)軸下與原點距離為2點的對應(yīng)數(shù)為±2,即該方程的解為x=±2
例2、解不等式|x-1|>2,如圖,在數(shù)軸上找出|x-1|=2的解,即到1的距離為2的點對應(yīng)的數(shù)為-1或3,則|x-1|>2的解為x<-1或x>3
例3、解方程|x-1|+|x+2|=5,由絕對值的幾何意義知,該方程表示求在數(shù)軸上與1和-2的距離之和為5的點對應(yīng)的x的值.在數(shù)軸上,1和-2的距離為3,滿足方程的x對應(yīng)點在1的右邊或-2的左邊,若x對應(yīng)點在1的右邊,由圖可以看出x=2;同理,若x對應(yīng)點在-2的左邊,可得x=-3,故原方程的解是x=2或x=-3
參考閱讀材料,解答下列問題:
(1)方程|x+3|=4的解為
(2)解不等式|x-3|+|x+4|≥9;
(3)若|x-3|-|x+4|≤a對任意的x都成立,求a的取值范圍.