科目: 來源: 題型:
【題目】某市舉辦“體彩杯”中學(xué)生籃球賽,初中男子組有市直學(xué)校的A、B、C三個隊和縣區(qū)學(xué)校的D,E,F(xiàn),G,H五個隊,如果從A,B,D,E四個隊與C,F(xiàn),G,H四個隊中個抽取一個隊進(jìn)行首場比賽,那么首場比賽出場的兩個隊都是縣區(qū)學(xué)校隊的概率是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)化簡: (2)解方程:.
【答案】(1) 或;(2)x=-2.
【解析】(1)先把括號內(nèi)通分,再把除法轉(zhuǎn)化為乘法,并把分子、分母分解因式約分化簡;
(2)兩邊都乘以最簡公分母2(x+3),把分式方程化為整式方程求解,求出x的值不要忘記檢驗.
(1)原式===或;
(2)解:去分母得:,
解得:x=﹣2,
經(jīng)檢驗x=﹣2是分式方程的解,
∴原方程的解為x=﹣2
點睛:本題考查了分式的混合運算和解分式方程,熟練掌握分式的運算法則和解分式方程的方法是解答本題的關(guān)鍵.
【題型】解答題
【結(jié)束】
20
【題目】小張同學(xué)學(xué)完統(tǒng)計知識后,隨機(jī)調(diào)查了她所在轄區(qū)若干名居民的年齡,將調(diào)查數(shù)據(jù)繪制成如下扇形統(tǒng)計圖和條形統(tǒng)計圖:
請根據(jù)以上不完整的統(tǒng)計圖提供的信息,解答下列問題:
(1)小張同學(xué)共調(diào)查了 名居民的年齡,扇形統(tǒng)計圖中a= ;
(2)補全條形統(tǒng)計圖,并注明人數(shù);
(3)若在該轄區(qū)中隨機(jī)抽取一人,那么這個人年齡是60歲及以上的概率為 ;
(4)若該轄區(qū)年齡在0~14歲的居民約有2400人,請估計該轄區(qū)居民有多少人?
查看答案和解析>>
科目: 來源: 題型:
【題目】計算:
(1) (2)
(3)
【答案】(1) ;(2) ;(3) .
【解析】(1)先化成最簡二次根式,再合并同類二次根式即可;
(2)先算乘法和除法,再合并同類項或同類二次根式即可;
(3)第一項根據(jù)平方差公式計算,第二項根據(jù)完全平方公式計算,然后合并同類項或同類二次根式即可;
(1)原式==
(2)原式==
(3)原式==
點睛:本題考查了二次根式的性質(zhì)與化簡,二次根式的混合運算,熟練掌握二次根式的運算法則是解答本題的關(guān)鍵.
【題型】解答題
【結(jié)束】
19
【題目】(1)化簡: (2)解方程:.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖, 在△ABC中,AC=3、AB=4、BC=5, P為BC上一動點,PG⊥AC于點G,PH⊥AB
于點H,M是GH的中點,P在運動過程中PM的最小值為( )
A. 2.4 B. 1.4
C. 1.3 D. 1.2
【答案】D
【解析】分析: 由AC=3、AB=4、BC=5,得AC2+AB2=BC2,則∠A=90°,再結(jié)合PG⊥AC,PH⊥AB,可證四邊形AGPH是矩形;連接AP,可知當(dāng)AP⊥BC時AP最短,結(jié)合矩形的兩對角線相等和面積法,求出GH的值,
詳解:∵AC=3、AB=4、BC=5,
∴AC2=9,AB2=16,BC2=25,
∴AC2+AB2=BC2,
∴∠A=90°.
∵PG⊥AC,PH⊥AB,
∴∠AGP=∠AHP=90° ,
∴四邊形AGPH是矩形.
連接AP,
∴GH=AP.
∵當(dāng)AP⊥BC時,AP最短,
∴3×4=5AP,
∴AP=,
∴PM的最小值為1.2.
故選D.
點睛: 本題考查了勾股定理的逆定理,矩形的判定與性質(zhì),垂線段最短,面積法求線段的長,需結(jié)合矩形的判定方法,矩形的性質(zhì)以及三角形面積的知識求解;確定出點P的位置是解答本題的關(guān)鍵.
【題型】單選題
【結(jié)束】
18
【題目】計算:
(1) (2)
(3)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖是某公園的一角,∠AOB=90°,弧AB的半徑OA長是6m,C是OA的中點,點D在弧AB上,CD//OB,則圖中休閑區(qū)(陰影部分)的面積是( )
A.
B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】觀察下面的變形規(guī)律:
;;;….
解答下面的問題:
(1)仿照上面的格式請寫出= ;
(2)若n為正整數(shù),請你猜想= ;
(3)基礎(chǔ)應(yīng)用:計算:.
(4)拓展應(yīng)用1:解方程: =2016
(5)拓展應(yīng)用2:計算:.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點A(2,y1)、B(4,y2)都在反比例函數(shù)(k<0)的圖象上,則y1、y2的大小關(guān)系為( )
A. y1>y2 B. y1<y2 C. y1=y2 D. 無法確定
【答案】B
【解析】試題∵當(dāng)k<0時,y=在每個象限內(nèi),y隨x的增大而增大,∴y1<y2,故選B.
考點:反比例函數(shù)增減性.
【題型】單選題
【結(jié)束】
17
【題目】如圖, 在△ABC中,AC=3、AB=4、BC=5, P為BC上一動點,PG⊥AC于點G,PH⊥AB
于點H,M是GH的中點,P在運動過程中PM的最小值為( )
A. 2.4 B. 1.4
C. 1.3 D. 1.2
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線y=kx-6經(jīng)過點A(4,0),直線y=-3x+3與x軸交于點B,且兩直線交于點C.
(1)求k的值.
(2)求△ABC的面積.
(3)在直線y=kx-6上是否存在異于點C的另一點P,使得△ABP與△ABC的面積相等,請直接寫出點P的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知∠AOB內(nèi)部有三條射線,其中OE平分角∠BOC,OF平分∠AOC.
(1)如圖1,若∠AOB=120°,∠AOC=30°,求∠EOF的度數(shù)?
(2)如圖2,若∠AOB=α,求∠EOF的度數(shù),(用含α的式子表示)
(3)若將題中的“平分”的條件改為“∠EOB=∠COB,∠COF=∠COA,且∠AOB=α,求∠EOF的度數(shù).(用含α的式子表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com