科目: 來源: 題型:
【題目】如圖1,已知:矩形ABCD中,AC、BD是對角線,分別延長AD至E,延長CD至F,使得DE=AD,DF=CD.
(1)求證:四邊形ACEF為菱形.
(2)如圖2,過E作EG⊥AC的延長線于G,若AG=8,cos∠ECG= ,則AD= (直接填空)、
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學開展“綠化家鄉(xiāng)、植樹造林”活動,為了解全校植樹情況,對該校甲、乙、丙、丁四個班級植樹情況進行了調(diào)查,將收集的數(shù)據(jù)整理并繪制成圖1和圖2兩幅尚不完整的統(tǒng)計圖,請根據(jù)圖中的信息,完成下列問題:
(1)這四個班共植樹棵;
(2)補全兩幅統(tǒng)計圖;
(3)求圖1中“甲”班級所對應的扇形圓心角的度數(shù);
(4)若四個班級所種植的樹成活了190棵,全校共植樹2000棵,請你估計全校種植的樹中成活的樹有多少棵.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系第一象限內(nèi),直線y=x與直線y=2x的內(nèi)部作等腰Rt△ABC,是∠ABC=90°,邊BC∥x軸,AB∥y軸,點A(1,1)在直線y=x上,點C在直線y=2x上:CB的延長線交直線y=x于點A1 , 作等腰Rt△A1B1C1 , 是∠A1B1C1=90°,B1C1∥x軸,A1B1∥y軸,點C1在直線y=2x上…按此規(guī)律,則等腰Rt△AnBnCn的腰長為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90°,BC=3,AB=4,D是邊AB上一點,DE∥BC交AC于點E,將△ADE沿DE翻折得到△A′DE,若△A′EC是直角三角形,則AD長為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=a(x﹣1)(x﹣4)與x軸相交于點A、B(點A在點B的左側),與x軸相交于點C,點D在線段CB上(點D不與B、C重合),過點D作CA的平行線,與拋物線相交于點E,直線BC的解析式為y=kx+2.
(1)拋物線的解析式為;
(2)求線段DE的最大值;
(3)當點D為BC的中點時,判斷四邊形CAED的形狀,并加以證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下面材料: 小明遇到這樣兩個問題:
(1)如圖1,AB是⊙O的直徑,C是⊙O上一點,OD⊥AC,垂足為D,BC=﹣6,求OD的長;
(2)如圖2△ABC中,AB=6,AC=4,點D為BC的中點,求AD的取值范圍. 對于問題(1),小明發(fā)現(xiàn)根據(jù)垂徑定理,可以得出點D是AC的中點,利用三角形中位線定理可以解決;對于問題(2),小明發(fā)現(xiàn)延長AD到E,使DE=AD,連接BE,可以得到全等三角形,通過計算可以解決.
請回答:
問題(1)中OD長為;問題(2)中AD的取值范圍是;
參考小明思考問題的方法,解決下面的問題:
(3)如圖3,△ABC中,∠BAC=90°,點D、E分別在AB、AC上,BE與CD相交于點F,AC=mEC,AB=2 EC,AD=nDB.
①當n=1時,如圖4,在圖中找出與CE相等的線段,并加以證明;
②直接寫出 的值(用含m、n的代數(shù)式表示).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點A、B的坐標分別為(0,3)、(7,0),點C在第一象限,AC∥x軸,∠OBC=45°.
(1)求點C的坐標;
(2)點D在線段AC上,CD=1,點E的坐標為(n,0),在直線DE的右側作∠DEG=45°,直線EG與直線BC相交于點F,設BF=m,當n<7且n≠0時,求m關于n的函數(shù)解析式,并直接寫出n的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,∠ABD=∠CBD=60°,AC與BD相交于點E,過點C作⊙O的切線,與AB的延長線相交于點F.
(1)判斷△ACD的形狀,并加以證明
(2)若CF=2,DE=4,求弦CD的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】某商場銷售一種商品,在一段時間內(nèi),該商品的銷售量y(千克)與每千克的銷售價x(元)滿足一次函數(shù)關系(如圖所示),其中30≤x≤80.
(1)求y關于x的函數(shù)解析式;
(2)若該種商品每千克的成本為30元,當每千克的銷售價為多少元時,獲得的利潤為600元?
查看答案和解析>>
科目: 來源: 題型:
【題目】某區(qū)為了解七年級學生開展跳繩活動的情況,隨機調(diào)查了該區(qū)部分學校七年級學生1分鐘跳繩的次數(shù),將調(diào)查結果進行統(tǒng)計,下面是根據(jù)調(diào)查數(shù)據(jù)制作的統(tǒng)計圖表的一部分.
分組 | 次數(shù)x(個) | 人數(shù) |
A | 0≤x<120 | 24 |
B | 120≤x<130 | 72 |
C | 130≤x<140 | |
D | x≥140 |
根據(jù)以上信息,解答下列問題:
(1)在被調(diào)查的學生中,跳繩次數(shù)在120≤x<130范圍內(nèi)的人數(shù)為人,跳繩次數(shù)在0≤x<120范圍內(nèi)的人數(shù)占被調(diào)查人數(shù)的百分比為%;
(2)本次共調(diào)查了名學生,其中跳繩次數(shù)在130≤x<140范圍內(nèi)的人數(shù)為人,跳繩次數(shù)在x≥140范圍內(nèi)的人數(shù)占被調(diào)查人數(shù)的百分比為%;
(3)該區(qū)七年級共有4000名學生,估計該區(qū)七年級學生1分鐘跳繩的次數(shù)不少于130個的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com