科目: 來源: 題型:
【題目】如圖,已知四邊形ABCD和四邊形DEFG為正方形,點E在線段DC上,點A,D,G在同一直線上,且AD=3,DE=1,連接AC,CG,AE,并延長AE交OG于點H.
(1)求證:∠DAE=∠DCG.
(2)求線段HE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC的頂點都在網格點上,建立如圖所示的平面直角坐標系.
(1)請根據如圖所示的平面直角坐標系,寫出△ABC各點的坐標,并求出△ABC的面積.
(2)把△ABC平移到△A1B1C1,使點B1與原點O重合,按要求畫出△A1B1C1,并寫出平移過程.
(3)已知P是△ABC內有一點,平移至△A1B1C1后,P點對應點的坐標為P1 (a,b),試寫出P點的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】某商場對今年端午節(jié)這天銷售A、B、C三種品牌粽子的情況進行了統計,繪制如圖1和圖2所示的統計圖.根據圖中信息解答下列問題:
(1)求銷售這三種品牌粽子共多少個?
(2)請補全圖1中的條形統計圖;
(3)求A品牌粽子在圖2中所對應的圓心角的度數;
(4)若該商場準備明年端午節(jié)期間購進粽子6000個,那應該對A、B、C三種品牌何進貨?請你提出一條合理化的建議
查看答案和解析>>
科目: 來源: 題型:
【題目】今年西寧市高中招生體育考試測試管理系統的運行,將測試完進行換算統分改為計算機自動生成,現場公布成績,降低了誤差,提高了透明度,保證了公平.考前張老師為了解全市初三男生考試項目的選擇情況(每人限選一項),對全市部分初三男生進行了調查,將調查結果分成五類:A、實心球(2kg);B、立定跳遠;C、50米跑;D、半場運球;E、其它.并將調查結果繪制成以下兩幅不完整的統計圖,請你根據統計圖解答下列問題:
(1)將上面的條形統計圖補充完整;
(2)假定全市初三畢業(yè)學生中有5500名男生,試估計全市初三男生中選50米跑的人數有多少人?
(3)甲、乙兩名初三男生在上述選擇率較高的三個項目:B、立定跳遠;C、50米跑;D、半場運球中各選一項,同時選擇半場運球、立定跳遠的概率是多少?請用列表法或畫樹形圖的方法加以說明并列出所有等可能的結果.
查看答案和解析>>
科目: 來源: 題型:
【題目】某小區(qū)為了綠化環(huán)境,計劃分兩次購進A、B兩種花草,第一次分別購進A、B兩種花草30棵和15棵,共花費675元;第二次分別購進A、B兩種花草12棵和5棵.兩次共花費940元(兩次購進的A、B兩種花草價格均分別相同).
(1)A,B兩種花草每棵的價格分別是多少元?
(2)若購買A,B兩種花草共31棵,且B種花草的數量少于A種花草的數量的2倍,請你給出一種費用最省的方案,并求出該方案所需費用.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于平面直角坐標系 xOy 中的點 A,給出如下定義:若存在點 B(不與點 A 重合,且直線 AB 不與 坐標軸平行或重合),過點 A 作直線 m∥x 軸,過點 B 作直線 n∥y 軸,直線 m,n 相交于點 C.當線段 AC,BC 的長度相等時,稱點 B 為點 A 的等距點,稱三角形 ABC 的面積為點 A 的等距面積. 例如:如 圖,點 A(2,1),點 B(5,4),因為 AC= BC=3,所以 B 為點 A 的等距點,此時點 A 的等距面積為.
(1)點 A 的坐標是(0,1),在點 B1(2,3),B2 (1, 1) , B3 (3, 2) 中,點A的等距點為 .
(2)點 A 的坐標是 (3,1) ,點 A 的等距點 B 在第三象限,
①若點 B 的坐標是 (5, 1) ,求此時點 A 的等距面積;
②若點 A 的等距面積不小于 2,請直接寫出點 B 的橫坐標 t 的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標xOy中,正比例函數y=kx的圖象與反比例函數y= 的圖象都經過點A(2,﹣2).
(1)分別求這兩個函數的表達式;
(2)將直線OA向上平移3個單位長度后與y軸交于點B,與反比例函數圖象在第四象限內的交點為C,連接AB,AC,求點C的坐標及△ABC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】綜合與實踐:
如圖1,已知△ABC為等邊三角形,點D,E分別在邊AB、AC上,AD=AE,連接DC,點M,P,N分別為DE,DC,BC的中點.
(1)觀察猜想:在圖1中,線段PM與PN的數量關系是 ,∠MPN的度數是 ;
(2)探究證明:把△ADE繞點A逆時針方向旋轉到圖2的位置,
①判斷△PMN的形狀,并說明理由;
②求∠MPN的度數;
(3)拓展延伸:若△ABC為直角三角形,∠BAC=90°,AB=AC=10,點DE分別在邊AB,AC上,AD=AE=4,連接DC,點M,P,N分別為DE,DC,BC的中點.把△ADE繞點A在平面內自由旋轉,如圖3,請直接寫出△PMN面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知⊙O的半徑為2,AB為直徑,CD為弦.AB與CD交于點M,將 沿CD翻折后,點A與圓心O重合,延長OA至P,使AP=OA,連接PC
(1)求CD的長;
(2)求證:PC是⊙O的切線;
(3)點G為 的中點,在PC延長線上有一動點Q,連接QG交AB于點E.交 于點F(F與B、C不重合).問GEGF是否為定值?如果是,求出該定值;如果不是,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,點O為原點,點A的坐標為(﹣6,0).如圖1,正方形OBCD的頂點B在x軸的負半軸上,點C在第二象限.現將正方形OBCD繞點O順時針旋轉角α得到正方形OEFG.
(1)如圖2,若α=60°,OE=OA,求直線EF的函數表達式.
(2)若α為銳角,tanα= ,當AE取得最小值時,求正方形OEFG的面積.
(3)當正方形OEFG的頂點F落在y軸上時,直線AE與直線FG相交于點P,△OEP的其中兩邊之比能否為 :1?若能,求點P的坐標;若不能,試說明理由
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com