科目: 來源: 題型:
【題目】如圖,在正方形ABCD中,點O為對角線AC的中點,過點o作射線OG、ON分別交AB,BC于點E,F(xiàn),且∠EOF=90°,BO、EF交于點P.則下列結(jié)論中:
⑴圖形中全等的三角形只有兩對;
⑵正方形ABCD的面積等于四邊形OEBF面積的4倍;
⑶BE+BF= OA;
⑷AE2+CF2=2OPOB.
正確的結(jié)論有( )個.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目: 來源: 題型:
【題目】某數(shù)學興趣小組同學進行測量大樹CD高度的綜合實踐活動,如圖,在點A處測得直立于地面的大樹頂端C的仰角為36°,然后沿在同一剖面的斜坡AB行走13米至坡頂B處,然后再沿水平方向行走6米至大樹腳底點D處,斜面AB的坡度(或坡比)i=1:2.4,那么大樹CD的高度約為(參考數(shù)據(jù):sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)( )
A.8.1米
B.17.2米
C.19.7米
D.25.5米
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,在正方形ABCD外取一點E,連接AE,BE,DE,過點A作AE的垂線交DE于點P.若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+.其中正確結(jié)論的序號是( 。
A. ①②③ B. ①②④ C. ②③④ D. ①③④
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線l:y=kx和拋物線C:y=ax2+bx+1.
(Ⅰ)當k=1,b=1時,拋物線C:y=ax2+bx+1的頂點在直線l:y=kx上,求a的值;
(Ⅱ)若把直線l向上平移k2+1個單位長度得到直線r,則無論非零實數(shù)k取何值,直線r與拋物線C都只有一個交點;
(i)求此拋物線的解析式;
(ii)若P是此拋物線上任一點,過點P作PQ∥y軸且與直線y=2交于點Q,O為原點,求證:OP=PQ.
查看答案和解析>>
科目: 來源: 題型:
【題目】將一矩形紙片OABC放在直角坐標系中,O為原點,C在x軸上,OA=6,OC=10.
(Ⅰ)如圖①,在OA上取一點E,將△EOC沿EC折疊,使點O落在AB邊上的D點,求E點的坐標;
(Ⅱ)如圖②,在OA、OC邊上選取適當?shù)狞cE′、F,將△E′OF沿E′F折疊,使O點落在AB邊上D′點,過D′作D′G∥OA交E′F于T點,交OC于G點,設T的坐標為(x,y),求y與x之間的函數(shù)關系式,并直接寫出自變量x的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,若OG=2 ,求△D′TF的面積.(直接寫出結(jié)果即可)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線與軸交于, (在的左側(cè)),與軸交于點,拋物線上的點的橫坐標為3,過點作直線軸.
(1)點為拋物線上的動點,且在直線的下方,點,分別為軸,直線上的動點,且軸,當面積最大時,求的最小值;
(2)過(1)中的點作,垂足為,且直線與軸交于點,把繞頂點旋轉(zhuǎn)45°,得到,再把沿直線平移至,在平面上是否存在點,使得以,,,為頂點的四邊形為菱形?若存在直接寫出點的坐標;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,點M為BA延長線上一點,∠ABC的平分線BE和∠CAM的平分線AD相交于點P,分別交AC和BC的延長線于E,D.過P作PF⊥AD交AC的延長線于點H,交BC的延長線于點F,連接AF交DH于點G,則下列結(jié)論:①∠APB=45°;②PF=PA;③DG=AP+GH;④BD﹣AH=AB.其中正確的是_____(填序號).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,利用熱氣球探測器測量大樓AB的高度,從熱氣球P處測得大樓B的俯角為37°,大樓底部A的俯角為60°,此時熱氣球P離底面的高度為120m.試求大樓AB的高度(結(jié)果保留整數(shù)).
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75, ≈1.73)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com