科目: 來源: 題型:
【題目】為傳播奧運(yùn)知識(shí),小剛就本班學(xué)生對(duì)奧運(yùn)知識(shí)的了解程度進(jìn)行了一次調(diào)查統(tǒng)計(jì):A:熟悉,B:了解較多,C:一般了解.圖1和圖2是他采集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答以下問題:
(1)在條形圖中,將表示“一般了解”的部分補(bǔ)充完整;
(2)在扇形統(tǒng)計(jì)圖中,計(jì)算出“了解較多”部分所對(duì)應(yīng)的圓心角的度數(shù)為______;
(3)如果全年級(jí)共1000名同學(xué),請(qǐng)你估算全年級(jí)對(duì)奧運(yùn)知識(shí)“了解較多”的學(xué)生人數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC的外角∠CBD和∠BCE的平分線相交于點(diǎn)F,則下列結(jié)論正確的是( 。
A. 點(diǎn)F在BC邊的垂直平分線上 B. 點(diǎn)F在∠BAC的平分線上
C. △BCF是等腰三角形 D. △BCF是直角三角形
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與拋物線交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為-8.
(1)求該拋物線的解析式;
(2)點(diǎn)P是直線AB上方的拋物線上一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),過點(diǎn)P作x軸的垂線,垂足為C,交直線AB于點(diǎn)D,作PE⊥AB于點(diǎn)E.
①設(shè)△PDE的周長(zhǎng)為l,點(diǎn)P的橫坐標(biāo)為x,求l關(guān)于x的函數(shù)關(guān)系式,并求出l的最大值;
②連接PA,以PA為邊作如圖所示一側(cè)的正方形APFG.隨著點(diǎn)P的運(yùn)動(dòng),正方形的大小、位置也隨之改變.當(dāng)頂點(diǎn)F或G恰好落在y軸上時(shí),求出對(duì)應(yīng)的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一個(gè)點(diǎn)在第一象限及x軸、y軸上移動(dòng),在第一秒鐘,它從原點(diǎn)移動(dòng)到點(diǎn)(1,0),然后按照?qǐng)D中箭頭所示方向移動(dòng),即(0,0)→(1,0)→(1,1)→)(0,1)→(0,2)→……,且每秒移動(dòng)一個(gè)單位,那么第2018秒時(shí),點(diǎn)所在位置的坐標(biāo)是( ).
A. (6,44)B. (38,44)C. (44,38)D. (44,6)
查看答案和解析>>
科目: 來源: 題型:
【題目】某籃球隊(duì)對(duì)隊(duì)員進(jìn)行定點(diǎn)投籃測(cè)試,每人每天投籃10次,現(xiàn)對(duì)甲、乙兩名隊(duì)員在五天中進(jìn)球數(shù)(單位:個(gè))進(jìn)行統(tǒng)計(jì),結(jié)果如下:
甲 | 10 | 6 | 10 | 6 | 8 |
乙 | 7 | 9 | 7 | 8 | 9 |
經(jīng)過計(jì)算,甲進(jìn)球的平均數(shù)為8,方差為3.2.
(1)求乙進(jìn)球的平均數(shù)和方差;
(2)如果綜合考慮平均成績(jī)和成績(jī)穩(wěn)定性兩方面的因素,從甲、乙兩名隊(duì)員中選出一人去參加定點(diǎn)投籃比賽,應(yīng)選誰(shuí)?為什么?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線l1:y1=2x+2與直線 l2:y2=mx+8相交于點(diǎn) P(2,b).
(1)求 b,m 的值;
(2)直接寫出當(dāng) y1<y2 時(shí),自變量 x 的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,把一張長(zhǎng)方形紙片 ABCD 折疊起來,使其對(duì)角頂點(diǎn) A,C 重合,若其長(zhǎng) BC 為 9,寬 AB 為 3.
⑴求證:△AEF 是等腰三角形;
⑵EF= .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,四邊形ABCD是正方形,點(diǎn)P在直線BC上,點(diǎn)G在直線AD上(P、G不與正方形頂點(diǎn)重合,且在CD的同側(cè)),PD=PG,DF⊥PG于點(diǎn)H,交直線AB于點(diǎn)F,將線段PG繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到線段PE,連結(jié)EF.
(1)如圖1,當(dāng)點(diǎn)P與點(diǎn)G分別在線段BC與線段AD上時(shí).
①求證:DG=2PC;
②求證:四邊形PEFD是菱形;
(2)如圖2,當(dāng)點(diǎn)P與點(diǎn)G分別在線段BC與線段AD的延長(zhǎng)線上時(shí),請(qǐng)猜想四邊形PEFD是怎樣的特殊四邊形,并證明你的猜想.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四邊形 ABCD 中,AD∥BC,DE⊥BC,垂足為點(diǎn) E,連接 AC 交DE 于點(diǎn) F,點(diǎn) G 為 AF 的中點(diǎn),∠ACD=2∠ACB,若 DC=5,則 AF 的長(zhǎng)為___________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com