科目: 來源: 題型:
【題目】如圖,已知AB∥CD,∠A=40°.點P是射線AB上一動點(與點A不重合),CE、CF分別平分∠ACP和∠DCP交射線AB于點E、F.
(1)求∠ECF的度數;
(2)隨著點P的運動,∠APC與∠AFC之間的數量關系是否改變?若不改變,請求出此數量關系;若改變,請說明理由;
(3)當∠AEC=∠ACF時,求∠APC的度數.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABO中,斜邊AB=1.若OC∥BA,∠AOC=36°,則( )
A.點B到AO的距離為sin54°
B.點B到AO的距離為tan36°
C.點A到OC的距離為sin36°sin54°
D.點A到OC的距離為cos36°sin54°
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在四邊形ABCD中,AB∥CD,∠ABC=90°,動點P從A點出發(fā),沿A→D→C→B勻速運動,設點P運動的路程為x,△ABP的面積為y,圖象如圖2所示.
⑴①AD= , CD= , BC= ; (填空)
②當點P運動的路程x=8時,△ABP的面積為y= ; (填空)
⑵求四邊形ABCD的面積
圖1 圖2
查看答案和解析>>
科目: 來源: 題型:
【題目】學習“利用三角函數測高”后,某綜合實踐活動小組實地測量了鳳凰山與中心廣場的相對高度AB,其測量步驟如下:
(1)在中心廣場測點C處安置測傾器,測得此時山頂A的仰角∠AFH=30°;
(2)在測點C與山腳B之間的D處安置測傾器(C、D與B在同一直線上,且C、D之間的距離可以直接測得),測得此時山頂上紅軍亭頂部E的仰角∠EGH=45°;
(3)測得測傾器的高度CF=DG=1.5米,并測得CD之間的距離為288米;
已知紅軍亭高度為12米,請根據測量數據求出鳳凰山與中心廣場的相對高度AB.(取1.732,結果保留整數)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是⊙O的直徑,PA、PC與⊙O分別相切于點A、C,PC交AB的延長線于點D.DE⊥PO交PO的延長線于點E.
(1)求證:∠EPD=∠EDO;
(2)若PC=6,tan∠PDA=,求OE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,動點P從點A出發(fā)沿AD方向向點D以1cm/s的速度運動,動點Q從點C開始沿著CB方向向點B以3cm/s的速度運動.點P、Q分別從點A和點C同時出發(fā),當其中一點到達端點時,另一點隨之停止運動.
(1)經過多長時間,四邊形PQCD是平行四邊形?
(2)經過多長時間,四邊形PQBA是矩形?
(3)經過多長時間,當PQ不平行于CD時,有PQ=CD.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某建筑物BC頂部有一旗桿AB,且點A、B、C在同一條直線上,小紅在D處觀測旗桿頂部A的仰角為47°,觀測旗桿底部B的仰角為42°已知點D到地面的距離DE為1.56m,EC=21m,求旗桿AB的高度和建筑物BC的高度(結果保留小數后一位).(參考數據:tan47°≈1.07,tan42°≈0.90)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△BAD是由△BEC在平面內繞點B旋轉60°而得,且AB⊥BC,BE=CE,連接DE.
(1)求證:△BDE≌△BCE;
(2)試判斷四邊形ABED的形狀,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1在正方形ABCD的外側作兩個等邊三角形ADE和DCF,連接AF,BE.
(圖1) (圖2) (備用圖)
(1)請判斷:AF與BE的數量關系是_____________,位置關系______________;
(2)如圖2,若將條件“兩個等邊三角形ADE和DCF”變?yōu)椤皟蓚等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)問中的結論是否仍然成立?請作出判斷并給予證明;
(3)若三角形ADE和DCF為一般三角形,且AE=DF,ED=FC,第(1)問中的結論都能成立嗎?請直接寫出你的判斷.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com