科目: 來源: 題型:
【題目】如圖所示,有若干邊長為1的正方形卡片,第1次并排擺2張黑色卡片,鋪成一個長方形;第2次在黑色卡片上方和右側(cè)擺白色卡片,所有卡片鋪成了一個較大的長方形;第3次繼續(xù)在白色卡片上方和右側(cè)擺黑色卡片,所有卡片鋪成了一個更大的長方形;以此類推,請解決以下問題:
(1)僅第10次要用去______張卡片,擺完第10次后,總共用去_______張卡片.
(2)你知道 2+4+6+8+……+2n的結(jié)果是多少嗎?寫出結(jié)果,結(jié)合圖形規(guī)律說明你的理由.
(3)求出從第51次至第100次所擺卡片的數(shù)量之和.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,平行四邊形ABCD中,點E為BC邊上一點,AE和BD交于點F,已知△ABF的面積等于 6,△BEF的面積等于4,則四邊形CDFE的面積等于___________
查看答案和解析>>
科目: 來源: 題型:
【題目】一天早晨,樂樂以80米/分的速度上學(xué),5分鐘后樂樂的爸爸發(fā)現(xiàn)他忘了帶數(shù)學(xué)書,爸爸立即騎自行車以280米/分的速度去追樂樂,并且在途中追上了他,請解決以下問題:
(1)爸爸追上樂樂用了多長時間?
(2)爸爸追上樂樂后,樂樂搭爸爸的自行車回到學(xué)校,結(jié)果提前了10分鐘到校,若爸爸搭上樂樂后的騎行速度為240米/分,求樂樂家離學(xué)校有多遠(yuǎn).
查看答案和解析>>
科目: 來源: 題型:
【題目】彩虹服裝店用元購進(jìn)件襯衣,很快全部售完.服裝店老板以每件元的價格為標(biāo)準(zhǔn),將超出的記為正數(shù),不足的記為負(fù)數(shù),記錄如下:,,,,,,,(單位:元).他賣完這件襯衣后是盈利還是虧損?盈利(或虧損)了多少錢?
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學(xué)從學(xué)生入學(xué)開始就積極開展環(huán)保教育,半學(xué)期后隨機對部分學(xué)生的環(huán)保習(xí)慣養(yǎng)成情況進(jìn)行了問卷調(diào)查,問卷中的環(huán)保習(xí)慣有:①隨手關(guān)燈;②充電后及時拔充電器插頭;③生活用水合理重復(fù)利用;④不用或少用一次性餐具;⑤少用塑料袋多用環(huán)保袋;⑥綠色出行,同學(xué)勾選出自己已經(jīng)養(yǎng)成的環(huán)保習(xí)慣,學(xué)校將結(jié)果繪成了如圖所示的不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.
(1)求在這次調(diào)查中,一共抽查了多少名學(xué)生?
(2)通過計算補全條形統(tǒng)計圖.
(3)已知全校共有學(xué)生1200人,請估計全校所有學(xué)生中已經(jīng)養(yǎng)成3個或3個以上環(huán)保習(xí)慣的同學(xué)共有多少人?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,將一張正方形紙片剪成四個小正方形,得到4個小正方形,稱為第一次操作;然后,將其中的一個正方形再剪成四個小正方形,共得到7個小正方形,稱為第二次操作;再將其中的一個正方形再剪成四個小正方形,共得到10個小正方形,稱為第三次操作;…,根據(jù)以上操作,若要得到2011個小正方形,則需要操作的次數(shù)是( 。
A. 669 B. 670 C. 671 D. 672
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(4,0)兩點,與y軸相交于點C,連結(jié)BC,點P為拋物線上一動點,過點P作x軸的垂線l,交直線BC于點G,交x軸于點E.
(1)求拋物線的表達(dá)式;
(2)當(dāng)P位于y軸右邊的拋物線上運動時,過點C作CF⊥直線l,F(xiàn)為垂足,當(dāng)點P運動到何處時,以P,C,F(xiàn)為頂點的三角形與△OBC相似?并求出此時點P的坐標(biāo);
(3)如圖2,當(dāng)點P在位于直線BC上方的拋物線上運動時,連結(jié)PC,PB,請問△PBC的面積S能否取得最大值?若能,請求出最大面積S,并求出此時點P的坐標(biāo),若不能,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】直線y=kx+b與反比例函數(shù)y=(x>0)的圖象分別交于點 A(m,3)和點B(6,n),與坐標(biāo)軸分別交于點C和點D.
(1)求直線AB的解析式;
(2)若點P是x軸上一動點,當(dāng)△COD與△ADP相似時,求點P的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】【閱讀學(xué)習(xí)】 劉老師提出這樣一個問題:已知α為銳角,且tanα=,求sin2α的值.
小娟是這樣解決的:
如圖1,在⊙O中,AB是直徑,點C在⊙O上,∠BAC=α,所以∠ACB=90°,tanα==.
易得∠BOC=2α.設(shè)BC=x,則AC=3x,則AB=x.作CD⊥AB于D,求出CD= (用含x的式子表示),可求得sin2α== .
【問題解決】
已知,如圖2,點M、N、P為圓O上的三點,且∠P=β,tanβ =,求sin2β的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】計算:
(1)23×(-5)-(-3)÷;
(2)(-3)×+8×(-2)-11÷(-);
(3)(-1)2-(-1)×(-24);
(4)(-2)2-()3+[1+(-)2×(-1)].
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com