【題目】【閱讀學(xué)習(xí)】 劉老師提出這樣一個(gè)問(wèn)題:已知α為銳角,且tanα=,求sin2α的值.
小娟是這樣解決的:
如圖1,在⊙O中,AB是直徑,點(diǎn)C在⊙O上,∠BAC=α,所以∠ACB=90°,tanα==.
易得∠BOC=2α.設(shè)BC=x,則AC=3x,則AB=x.作CD⊥AB于D,求出CD= (用含x的式子表示),可求得sin2α== .
【問(wèn)題解決】
已知,如圖2,點(diǎn)M、N、P為圓O上的三點(diǎn),且∠P=β,tanβ =,求sin2β的值.
【答案】CD=;sin2α=;.
【解析】試題分析:(1)、根據(jù)題意的方法得出CD和sin2α的值;(2)、連接NO,并延長(zhǎng)交⊙O于Q,連接MQ,MO,作MH⊥NO于H,設(shè)MN=k,則MQ=2k,NQ=k,OM=k,根據(jù)等面積法求出MH的長(zhǎng)度,然后根據(jù)Rt△MHO計(jì)算三角函數(shù)的值.
試題解析:(1)、. sin2α==.
(2)、如圖,連接NO,并延長(zhǎng)交⊙O于Q,連接MQ,MO,作MH⊥NO于H.
在⊙O中,∠NMQ=90°.
∵∠Q=∠P=β,OM=ON,
∴ ∠MON=2∠Q=2β
∵ tanβ=,
∴設(shè)MN=k,則MQ=2k,
∴NQ=.
∴OM=NQ=.
∵,
∴.
∴ MH=.
在Rt△MHO中,sin2β=sin∠MON =.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=(m﹣2)xm2+m-4 +2x﹣1是一個(gè)二次函數(shù),求該二次函數(shù)的解析式.
【答案】y=﹣5x2+2x﹣1
【解析】試題分析:根據(jù)二次函數(shù)的定義得到m2+m﹣4=2且m﹣2≠0,由此求得m的值,進(jìn)而得到該二次函數(shù)的解析式.
試題解析:依題意得:m2+m﹣4=2且m﹣2≠0. 即(m﹣2)(m+3)=0且m﹣2≠0,
解得m=﹣3,
則該二次函數(shù)的解析式為y=﹣5x2+2x﹣1
【題型】解答題
【結(jié)束】
21
【題目】如圖,在ABCD中,EF∥AB,F(xiàn)G∥ED,DE:DA=2:5,EF=4,求線段CG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù) y=ax2+bx+c(a≠0)的圖象如圖所示,對(duì)稱軸是直線 x=1,下列結(jié)論:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正確的是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校需要購(gòu)買一批籃球和足球,已知一個(gè)籃球比一個(gè)足球的進(jìn)價(jià)高30元,買兩個(gè)籃球和三個(gè)足球一共需要510元.
(1)求籃球和足球的單價(jià);
(2)根據(jù)實(shí)際需要,學(xué)校決定購(gòu)買籃球和足球共100個(gè),其中籃球購(gòu)買的數(shù)量不少于足球數(shù)量的,學(xué)?捎糜谫(gòu)買這批籃球和足球的資金最多為10500元.請(qǐng)問(wèn)有幾種購(gòu)買方案?
(3)若購(gòu)買籃球x個(gè),學(xué)校購(gòu)買這批籃球和足球的總費(fèi)用為y(元),在(2)的條件下,求哪種方案能使y最小,并求出y的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知線段AC,點(diǎn)D為AC的中點(diǎn),B是直線AC上的一點(diǎn),且 BCAB,BD=1,則AC=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】彩虹服裝店用元購(gòu)進(jìn)件襯衣,很快全部售完.服裝店老板以每件元的價(jià)格為標(biāo)準(zhǔn),將超出的記為正數(shù),不足的記為負(fù)數(shù),記錄如下:,,,,,,,(單位:元).他賣完這件襯衣后是盈利還是虧損?盈利(或虧損)了多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,若拋物線L1的頂點(diǎn)A在拋物線L2上,拋物線L2的頂點(diǎn)B在拋物線L1上(點(diǎn)A與點(diǎn)B不重合),我們把這樣的兩拋物線L1、L2稱為“伴隨拋物線”,可見(jiàn)一條拋物線的“伴隨拋物線”可以有多條.
(1)拋物線L1:y=-x2+4x-3與拋物線L2是“伴隨拋物線”,且拋物線L2的頂點(diǎn)B的橫坐標(biāo)為4,求拋物線L2的表達(dá)式;
(2)若拋物線y=a1(x-m)2+n的任意一條“伴隨拋物線”的表達(dá)式為y=a2(x-h)2+k,請(qǐng)寫出a1與a2的關(guān)系式,并說(shuō)明理由;
(3)在圖②中,已知拋物線L1:y=mx2-2mx-3m(m>0)與y軸相交于點(diǎn)C,它的一條“伴隨拋物線”為L2,拋物線L2與y軸相交于點(diǎn)D,若CD=4m,求拋物線L2的對(duì)稱軸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】利用如圖1的二維碼可以進(jìn)行身份識(shí)別.某校建立了一個(gè)身份識(shí)別系統(tǒng),圖2是某個(gè)學(xué)生的識(shí)別圖案,黑色小正方形表示1,白色小正方形表示0,將第一行數(shù)字從左到右依次記為a,b,c,d,那么可以轉(zhuǎn)換為該生所在班級(jí)序號(hào),其序號(hào)為a×23+b×22+c×21+d×20,如圖2第一行數(shù)字從左到右依次為0,1,0,1,序號(hào)為0×23+1×22+0×21+1×20=5,表示該生為5班學(xué)生.表示6班學(xué)生的識(shí)別圖案是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四邊形ABCD中,對(duì)角線AC與BD交于點(diǎn)O,下列各組條件,其中不能判定四邊形ABCD是平行四邊形的是( 。
A. OA=OC,OB=ODB. OA=OC,AB∥CD
C. AB=CD,OA=OCD. ∠ADB=∠CBD,∠BAD=∠BCD
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com