科目: 來源: 題型:
【題目】如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是( 。
A. 2 B. C. D. 2
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)方法回顧
在學習三角形中位線時,為了探索三角形中位線的性質(zhì),思路如下:
第一步添加輔助線:如圖1,在△ABC中,延長DE (D、E分別是AB、AC的中點)到點F,使得EF=DE,連接CF;
第二步證明△ADE≌△CFE,再證四邊形DBCF是平行四邊形,從而得到DE∥BC,DE=BC.
(2)問題解決
如圖2,在正方形ABCD中,E為AD的中點,G、F分別為AB、CD邊上的點,若AG=2,DF=3,∠GEF=90°,求GF的長.
(3)拓展研究
如圖3,在四邊形ABCD中,∠A=100°,∠D=110°,E為AD的中點,G、F分別為AB、CD邊上的點,若AG=4,DF=,∠GEF=90°,求GF的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】2019年3月25日是全國中小學生安全教育日,某中學為加強學生的安全意識,組織了全校800名學生參加安全知識競賽,從中抽取了部分學生成績(得分取正整數(shù),滿分為100分)進行統(tǒng)計.請根據(jù)尚未完成的頻率分布表和頻數(shù)分布直方圖解題.
(1)這次抽取了 名學生的競賽成績進行統(tǒng)計,其中:m= ,n=
(2)補全頻數(shù)分布直方圖.
(3)若成績在70分以下(含70分)的學生為安全意識不強,有待進一步加強安全教育,則該校安全意識不強的學生約有多少人?
查看答案和解析>>
科目: 來源: 題型:
【題目】直線y=mx(m為常數(shù))與雙曲線y=(k為常數(shù))相交于A、B兩點.
(1)若點A的橫坐標為3,點B的縱坐標為﹣4
①直接寫出:k=____,m=____;
②點C在第一象限內(nèi)是雙曲線y=的點,當S△OAC=9時,求點C的坐標;
(2)將直線y=mx向右平移得到直線y=mx+b,交雙曲線y=于點E(4,y1)和F(﹣2,y2),直接寫出不等式mx2+bx<k的解集:_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在RtΔABC中,AB=AC=4,∠BAC=900.點E為AB的中點,以AE為對角線作正方形ADEF,連接CF并延長交BD于點G,則線段CG的長等于________________.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知忠華家、桂枝家、文興家及學校在一條南北向的大街旁.一天,放學后他們?nèi)藦膶W校出發(fā),先向南走250米達到桂枝家(記為點A),然后再向南走250米到文興家(記為點B),從文興家向北走1000米到達忠華家(記為點C).
(1)以學校為原點,以向北方向為正方向,用1個單位長度表示實際距離250米畫出一條數(shù)軸,在數(shù)軸上用字母表示出忠華家、桂枝家、文興家的位置.
(2)忠華家在學校的哪個方向,到學校的距離是多少米?
(3)如果以向南方向為正方向建立數(shù)軸,對確定忠華家相對于學校的位置有影響嗎?說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】(認識概念)
點P、Q分別是兩個圖形G1、G2上的任意一點,當P、Q兩點之間的距離最小時,我們把這個最小距離叫作圖形G1、G2的親密距離,記為d(G1,G2).例如,如果點M、N分別是兩條相交直線a、b上的任意一點,則d(a,b)=0
(初步運用)
如圖1,長方形四個頂點分別是點A、B、C、D,邊AB=CD=5,AD=BC=3.那么d(AB,CD)=___,d(AD,BC)=_____,d(AD,AB)=_____.
(深入探究)
(1)在圖1中,如果將線段CD沿它所在直線平移(邊AB不動),且使d(CD,AB)不變,那么線段CD的中點偏離它原來位置的最大距離為______;
(2)如圖2,線段AB∥直線CD,AB=1,點A到CD的距離為3,將線段AB繞點A旋轉(zhuǎn)90°后的對應(yīng)線段為AB′,則d(AB′,CD)=______.
查看答案和解析>>
科目: 來源: 題型:
【題目】某超市預(yù)測某飲料會暢銷、先用1800元購進一批這種飲料,面市后果然供不應(yīng)求,又用8100元購進這種飲料,第二批飲料的數(shù)量是第一批的3倍,但單價比第一批貴2元.
(1)第一批飲料進貨單價多少元?
(2)若兩次進飲料都按同一價格銷售,兩批全部售完后,獲利不少于2700元,那么銷售單價至少為多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】一個問題解決往往經(jīng)歷發(fā)現(xiàn)猜想——探索歸納——問題解決的過程,下面結(jié)合一道幾何題來體驗一下.
(發(fā)現(xiàn)猜想)(1)如圖①,已知∠AOB=70°,∠AOD=100°,OC為∠BOD的角平分線,則∠AOC的度數(shù)為 ;.
(探索歸納)(2)如圖①,∠AOB=m,∠AOD=n,OC為∠BOD的角平分線. 猜想∠AOC的度數(shù)(用含m、n的代數(shù)式表示),并說明理由.
(問題解決)(3)如圖②,若∠AOB=20°,∠AOC=90°,∠AOD=120°.若射線OB繞點O以每秒20°逆時針旋轉(zhuǎn),射線OC繞點O以每秒10°順時針旋轉(zhuǎn),射線OD繞點O每秒30°順時針旋轉(zhuǎn),三條射線同時旋轉(zhuǎn),當一條射線與直線OA重合時,三條射線同時停止運動. 運動幾秒時,其中一條射線是另外兩條射線夾角的角平分線?
查看答案和解析>>
科目: 來源: 題型:
【題目】把下列各數(shù)分別填入相應(yīng)的集合里:
﹣|﹣5|, 2.626 626 662…, 0, ﹣π, ﹣, 0.12, ﹣(﹣6).
(1)正有理數(shù)集合:{ ____________ …};
(2)負數(shù)集合:{ ____________ …};
(3)整數(shù)集合:{ ____________ …};
(4)分數(shù)集合:{ ____________ …}.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com