科目: 來源: 題型:
【題目】(2017山東德州第21題)如圖所示,某公路檢測中心在一事故多發(fā)地帶安裝了一個測速儀,檢測點(diǎn)設(shè)在距離公路10m的A處,測得一輛汽車從B處行駛到C處所用的時間為0.9秒.已知∠B=30°,∠C=45°
(1)求B,C之間的距離;(保留根號)
(2)如果此地限速為80km/h,那么這輛汽車是否超速?請說明理由.(參考數(shù)據(jù):,)
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)當(dāng)a=2,b=時,分別求代數(shù)式a2﹣2ab+b2和(a﹣b)2的值;
(2)當(dāng)a=﹣5,b=﹣3時,a2﹣2ab+b2 (a﹣b)2(填“=“,“<”“>”)
(3)觀察(1)(2)中代探索代數(shù)式a2﹣2ab+b2和(a﹣b)2有何數(shù)量關(guān)系,并把探索的結(jié)果寫出來:a2﹣2ab+b2 (a﹣b)2(填“=”,“<”“>”)
(4)利用你發(fā)現(xiàn)的規(guī)律,求135.72﹣2×135.7×35.7+35.72的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】計(jì)算下列各題(直接寫出答案)
(1)2+(﹣2)= ;
(2)1﹣3= ;
(3)(﹣1)×(﹣3)= ;
(4)12÷(﹣3)= ;
(5)﹣32×= ;
(6)(﹣4)2018×(﹣0.25)2019= ;
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,將等腰△ABC繞頂點(diǎn)B逆時針方向旋轉(zhuǎn)40°得到△A1BC1,AB與A1C1相交于點(diǎn)D,AC與A1C1、BC1分別交于點(diǎn)E、F.
求證:ΔBCF≌ΔBA1D.
當(dāng)∠C=40°時,請你證明四邊形A1BCE是菱形.
查看答案和解析>>
科目: 來源: 題型:
【題目】課間,小明拿著老師的等腰三角板玩,不小心掉到兩墻之間,如圖.
(1)求證:△ADC≌△CEB;
(2)從三角板的刻度可知AC=25cm,請你幫小明求出砌墻磚塊的厚度a的大。繅K磚的厚度相等).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在已知的△ABC中,按以下步驟作圖:①分別以B,C為圓心,以大于BC的長為半徑作弧,兩弧相交于兩點(diǎn)M,N;②作直線MN交AB于點(diǎn)D,連接CD.若CD=AC,∠A=50°,則∠ACB的度數(shù)為( )
A. 90°B. 95°C. 100°D. 105°
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,世博園段的浦江兩岸互相平行,C、D是浦西江邊間隔200m的兩個場館.海寶在浦東江邊的寶鋼大舞臺A處,測得∠DAB=30°, 然后沿江邊走了500m到達(dá)世博文化中心B處,測得∠CBF=60°, 求世博園段黃浦江的寬度(結(jié)果可保留根號).
查看答案和解析>>
科目: 來源: 題型:
【題目】某商店分兩次購進(jìn)、兩種商品進(jìn)行銷售,兩次購進(jìn)同一種商品的進(jìn)價(jià)相同,具體情況如下表所示:
(1)求、兩種商品每件的進(jìn)價(jià)分別是多少元?
(2)商場決定商品以每件元出售,商品以每件元出售.為滿足市場需求,需購進(jìn)、兩種商品共件,且商品的數(shù)量不少于種商品數(shù)量的倍,請你求出獲利最大的進(jìn)貨方案,并確定最大利潤.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,BC是⊙O的直徑,∠ABC=30°,過點(diǎn)B作⊙O的切線BD,與CA的延長線交于點(diǎn)D,與半徑AO的延長線交于點(diǎn)E,過點(diǎn)A作⊙O的切線AF,與直徑BC的延長線交于點(diǎn)F.
(1)求證:△ACF∽△DAE;
(2)若S△AOC=,求DE的長;
(3)連接EF,求證:EF是⊙O的切線.
【答案】(1) 見解析; (2)3 ;(3)見解析.
【解析】試題分析:(1)根據(jù)圓周角定理得到∠BAC=90°,根據(jù)三角形的內(nèi)角和得到∠ACB=60°根據(jù)切線的性質(zhì)得到∠OAF=90°,∠DBC=90°,于是得到∠D=∠AFC=30°由相似三角形的判定定理即可得到結(jié)論;
(2)根據(jù)S△AOC=,得到S△ACF=,通過△ACF∽△DAE,求得S△DAE=,過A作AH⊥DE于H,解直角三角形得到AH=DH=DE,由三角形的面積公式列方程即可得到結(jié)論;
(3)根據(jù)全等三角形的性質(zhì)得到OE=OF,根據(jù)等腰三角形的性質(zhì)得到∠OFG=(180°﹣∠EOF)=30°,于是得到∠AFO=∠GFO,過O作OG⊥EF于G,根據(jù)全等三角形的性質(zhì)得到OG=OA,即可得到結(jié)論.
試題解析:(1)證明:∵BC是⊙O的直徑,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°
∵OA=OC,∴∠AOC=60°,∵AF是⊙O的切線,∴∠OAF=90°,∴∠AFC=30°,∵DE是⊙O的切線,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE;
(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF,∴OC=CF,∵S△AOC=,∴S△ACF=,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=BD,∴AF=BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴,∵△ACF∽△DAE,∴=,∴S△DAE=,過A作AH⊥DE于H,∴AH=DH=DE,∴S△ADE=DEAH=×=,∴DE=;
(3)∵∠EOF=∠AOB=120°,∴∠OEB=∠AFO,在△AOF與△BOE中,∵∠OBE=∠OAF,∠OEB=∠AFO,OA=OB,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,過O作OG⊥EF于G,∴∠OAF=∠OGF=90°,在△AOF與△OGF中,∵∠OAF=∠OGF,∠AFO=∠GFO,OF=OF,∴△AOF≌△GOF,∴OG=OA,∴EF是⊙O的切線.
【題型】解答題
【結(jié)束】
25
【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),四邊形ABCO是矩形,點(diǎn)A,C的坐標(biāo)分別是A(0,2)和C(2,0),點(diǎn)D是對角線AC上一動點(diǎn)(不與A,C重合),連結(jié)BD,作DE⊥DB,交x軸于點(diǎn)E,以線段DE,DB為鄰邊作矩形BDEF.
(1)填空:點(diǎn)B的坐標(biāo)為 ;
(2)是否存在這樣的點(diǎn)D,使得△DEC是等腰三角形?若存在,請求出AD的長度;若不存在,請說明理由;
(3)①求證:;
②設(shè)AD=x,矩形BDEF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式(可利用①的結(jié)論),并求出y的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點(diǎn)C在反比例函數(shù)y=的圖象上,過點(diǎn)C作CD⊥y軸,交y軸負(fù)半軸于點(diǎn)D,且△ODC的面積是3.
(1)求反比例函數(shù)y=的解析式;
(2)若CD=1,求直線OC的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com