科目: 來源: 題型:
【題目】如圖,將一張正方形紙片剪成四個(gè)小正方形,得到4個(gè)小正方形,稱為第一次操作;然后,將其中的一個(gè)正方形再剪成四個(gè)小正方形,共得到7個(gè)小正方形,稱為第二次操作;再將其中的一個(gè)正方形再剪成四個(gè)小正方形,共得到10個(gè)小正方形,稱為第三次操作;…,根據(jù)以上操作,若要得到2011個(gè)小正方形,則需要操作的次數(shù)是( 。
A. 669 B. 670 C. 671 D. 672
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:A=2a2+3ab-2a-1,B=-a2+ab+1.
(1)若 |a+1| b- 22 0 ,求4A-(3A-2B)的值;
(2)若(1)中代數(shù)式的值與a的取值無關(guān),求b的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】我國南宋著名數(shù)學(xué)家秦九韶的著作《數(shù)書九章》里記載有這樣一道題:“問有沙田一塊,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知為田幾何?”這道題講的是:有一塊三角形沙田,三條邊長分別為5里,12里,13里,問這塊沙田面積有多大?題中“里”是我國市制長度單位,1里=500米,則該沙田的面積為( 。
A. 7.5平方千米 B. 15平方千米 C. 75平方千米 D. 750平方千米
查看答案和解析>>
科目: 來源: 題型:
【題目】(2017黑龍江省龍東地區(qū))已知:△AOB和△COD均為等腰直角三角形,∠AOB=∠COD=90°.連接AD,BC,點(diǎn)H為BC中點(diǎn),連接OH.
(1)如圖1所示,易證:OH=AD且OH⊥AD(不需證明)
(2)將△COD繞點(diǎn)O旋轉(zhuǎn)到圖2,圖3所示位置時(shí),線段OH與AD又有怎樣的關(guān)系,并選擇一個(gè)圖形證明你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)E是邊AC上一點(diǎn),線段BE垂直于∠BAC的平分線于點(diǎn)D,點(diǎn)M為邊BC的中點(diǎn),連接DM.
(1)求證: DM=CE;
(2)若AD=6,BD=8,DM=2,求AC的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=CD,對(duì)角線AC,BD相交于點(diǎn)O,AE⊥BD于點(diǎn)E,CF⊥BD于點(diǎn)F,連接AF,CE,若DE=BF,則下列結(jié)論:①CF=AE;②OE=OF;③四邊形ABCD是平行四邊形;④圖中共有四對(duì)全等三角形.其中正確結(jié)論的個(gè)數(shù)是
A.4 B.3 C.2 D.1
查看答案和解析>>
科目: 來源: 題型:
【題目】說明理由
如圖,∠1+∠2=230°,b∥c, 則∠1、∠2、∠3、∠4各是多少度?
解:∵ ∠1=∠2 (_________________________)
∠1+∠2=230°
∴∠1 =∠2 =________(填度數(shù))
∵ b∥c
∴∠4 =∠2= ________(填度數(shù))
( )
∠2 +∠3 =180° ( )
∴∠3 =180°-∠2 =_________(填度數(shù))
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,等腰直角△ABC中,∠ABC=90°,點(diǎn)P在AC上,將△ABP繞頂點(diǎn)B沿順時(shí)針方向旋轉(zhuǎn)90°后得到△CBQ.
(1)求∠PCQ的度數(shù);
(2)當(dāng)AB=4,AP:PC=1:3時(shí),求PQ的大小;
(3)當(dāng)點(diǎn)P在線段AC上運(yùn)動(dòng)時(shí)(P不與A重合),請(qǐng)寫出一個(gè)反映PA2,PC2,PB2之間關(guān)系的等式,并加以證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com