科目: 來源: 題型:
【題目】(1)如圖,在矩形ABCD中.點O在邊AB上,∠AOC=∠BOD.求證:AO=OB.
(2)如圖,AB是的直徑,PA與相切于點A,OP與相交于點C,連接CB,∠OPA=40°,求∠ABC的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示的運算程序中,若開始輸入的x值為100,我們發(fā)現(xiàn)第1次輸出的結(jié)果為50,第2次輸出的結(jié)果為25,…,第2018次輸出的結(jié)果為_________.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀與理解:
折紙,常常能為證明一個命題提供思路和方法.例如,在△ABC中,AB>AC(如圖),怎樣證明∠C>∠B呢?
把AC沿∠A的角平分線AD翻折,因為AB>AC,所以點C落在AB上的點處,即,據(jù)以上操作,易證明≌,所以,又因為>∠B,所以∠C>∠B.
感悟與應(yīng)用:
(1)如圖(a),在△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,試判斷AC和AD、BC之間的數(shù)量關(guān)系,并說明理由;
(2)如圖(b),在四邊形ABCD中,AC平分∠BAD,AC=16,AD=8,DC=BC=12,
① 求證:∠B+∠D=180°;
② 求AB的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,D、B、C三點在同一條直線上,∠C=50°,∠FBC=80°.問:∠DBF的平分線BE與AC有怎樣的位置關(guān)系?并說明理由.
解:BE與AC一定平行.
∵D、B、C三點在同一條直線上,
∴∠DBF+∠FBC=180°( ).
又∵∠FBC=80°(已知).
∴∠DBF= .
又∵BE平分∠DBF(已知).
∴( ).
又∵∠C=50°(已知),
∴∠ =∠ ( ),
∴ ∥ .( )
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線AB、CD被直線EF所截,交點分別為點O、p,OM平分∠EOB,PN平分∠OPD,如果∠1=∠2,(1)OM∥PN嗎?為什么?(2)AB∥CD嗎?為什么?
解:(1)OM∥PN.
∵∠1=∠2( ).
∴ ∥ .( )
(2)AB∥CD.
∵OM平分∠EOB,PN平分∠OPD( )
∴∠EOB= ;∠OPD= ( ).
又∵∠1=∠2(已知),
∴∠ =∠ ( ),
∴ ∥ .( )
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC的三個頂點分別為, , .若反比例函數(shù)在第一象限內(nèi)的圖象與△ABC有公共點,則k的取值范圍是__________.
查看答案和解析>>
科目: 來源: 題型:
【題目】我們規(guī)定x的一元一次方程ax=b的解為b﹣a,則稱該方程是“差解方程”,例如:3x=4.5的解為4.5﹣3=1.5,則該方程3x=4.5就是“差解方程”,請根據(jù)上述規(guī)定解答下列問題:
(1)已知關(guān)于x的一元一次方程4x=m是“差解方程”,則m=______.
(2)已知關(guān)于x的一元一次方程4x=ab+a是“差解方程”,它的解為a,則a+b=_____.
(3)已知關(guān)于x的一元一次方程4x=mn+m和﹣2x=mn+n都是“差解方程”,求代數(shù)式﹣3(m+11)+4n+2[(mn+m)2﹣m]﹣[(mn+n)2﹣2n]的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:△ABC是三邊都不相等的三角形,點O和點P是這個三角形內(nèi)部兩點.
(1)如圖①,如果點P是這個三角形三個內(nèi)角平分線的交點,那么∠BPC和∠BAC有怎樣的數(shù)量關(guān)系?請說明理由;
(2)如圖②,如果點O是這個三角形三邊垂直平分線的交點,那么∠BOC和∠BAC有怎樣的數(shù)量關(guān)系?請說明理由;
(3)如圖③,如果點P(三角形三個內(nèi)角平分線的交點),點O(三角形三邊垂直平分線的交點)同時在不等邊△ABC的內(nèi)部,那么∠BPC和∠BOC有怎樣的數(shù)量關(guān)系?請直接回答.
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,D是BC邊上的點(不與點B、C重合),連結(jié)AD.
(1)如圖1,當(dāng)點D是BC邊上的中點時,S△ABD:S△ACD= ;
(2)如圖2,當(dāng)AD是∠BAC的平分線時,若AB=m,AC=n,求S△ABD:S△ACD的值(用含m,n的代數(shù)式表示)
(3)如圖3,AD平分∠BAC,延長AD到E,使得AD=DE,連接BE,如果AC=2,AB=4,S△BDE=6,
那么S△ABC = .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com