科目: 來源: 題型:
【題目】已知反比例函數(shù)的圖象經(jīng)過點.
寫出函數(shù)表達式;
這個函數(shù)的圖象在哪幾個象限?隨的增大怎樣變化?
點、在這個函數(shù)的圖象上嗎?
如果點在圖象上,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某超市銷售某種玩具,進貨價為元.根據(jù)市場調(diào)查:在一段時間內(nèi),銷售單價是元時,銷售量是件,而銷售單價每上漲元,就會少售出件玩具,超市要完成不少于件的銷售任務(wù),又要獲得最大利潤,則銷售單價應(yīng)定為________元.
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)閱讀理解:
我們知道,只用直尺和圓規(guī)不能解決的三個經(jīng)典的希臘問題之一是三等分任意角,但是這個任務(wù)可以借助如圖1所示的一邊上有刻度的勾尺完成,勾尺的直角頂點為P,
“寬臂”的寬度=PQ=QR=RS,(這個條件很重要哦。┕闯叩囊贿MN滿足M,N,Q三點共線(所以PQ⊥MN).
下面以三等分∠ABC為例說明利用勾尺三等分銳角的過程:
第一步:畫直線DE使DE∥BC,且這兩條平行線的距離等于PQ;
第二步:移動勾尺到合適位置,使其頂點P落在DE上,使勾尺的MN邊經(jīng)過點B,同時讓點R落在∠ABC的BA邊上;
第三步:標記此時點Q和點P所在位置,作射線BQ和射線BP.
請完成第三步操作,圖中∠ABC的三等分線是射線 、 .
(2)在(1)的條件下補全三等分∠ABC的主要證明過程:
∵ ,BQ⊥PR,
∴BP=BR.(線段垂直平分線上的點與這條線段兩個端點的距離相等)
∴∠ =∠ .
∵PQ⊥MN,PT⊥BC,PT=PQ,
∴∠ =∠ .
(角的內(nèi)部到角的兩邊距離相等的點在角的平分線上)
∴∠ =∠ =∠ .
(3)在(1)的條件下探究:是否成立?如果成立,請說明理由;如果不成立,請在圖2中∠ABC的外部畫出(無需寫畫法,保留畫圖痕跡即可).
查看答案和解析>>
科目: 來源: 題型:
【題目】拋物線 y=x2+mx+n 過點(-1,8)和點(4,3)且與 x 軸交于 A,B 兩點, 與 y 軸交于點 C
(1)求拋物線的解析式;
(2)如圖1,AD 交拋物線于 D,交直線 BC 于點 G,且 AG=GD,求點 D 的坐標;
(3)如圖2,過點 M(3,2)的直線交拋物線于 P,Q,AP 交 y 軸于點 E,AQ 交y 軸于點 F,求OE·OF的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC 中,∠A=∠B=30°,E,F 在 AB 上,∠ECF=60°.
(1)畫出△BCF 繞點 C 順時針旋轉(zhuǎn) 120°后的△ACK;
(2)在(1)中,若 AE2+ EF2= BF2,求證 BF= CF.
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ ABC中,AB = AC
(1)如圖 1,如果∠BAD = 30°,AD是BC上的高,AD =AE,則∠EDC =
(2)如圖 2,如果∠BAD = 40°,AD是BC上的高,AD = AE,則∠EDC =
(3)思考:通過以上兩題,你發(fā)現(xiàn)∠BAD與∠EDC之間有什么關(guān)系?請用式子表示:
(4)如圖 3,如果AD不是BC上的高,AD = AE,是否仍有上述關(guān)系?如有,請你寫出來,并說明理由
查看答案和解析>>
科目: 來源: 題型:
【題目】兩個大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,B. C.E在同一條直線上,連結(jié)DC.
(1)請在圖2中找出與△ABE全等的三角形,并給予證明;
(2)證明:DC⊥BE.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,線段AB和射線BM交于點B.
(1)利用尺規(guī)完成以下作圖,并保留作圖痕跡(不寫作法)
①在射線BM上作一點C,使AC=AB;
②作∠ABM 的角平分線交AC于D點;
③在射線CM上作一點E,使CE=CD,連接DE.
(2)在(1)所作的圖形中,猜想線段BD與DE的數(shù)量關(guān)系,并證明之.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在邊長為 1 的正方形組成的網(wǎng)格中,△ ABC的頂點均在格點上,A(3,2), B(4, 3), C(1, 1)
(1)畫出△ABC關(guān)于y軸對稱的圖形△ A′B′C′
(2)寫出A′、B′、C′的坐標(直接寫出答案) A′ ;B′ ;C′ ;
(3)寫出△ A′B′C′的面積為 .(直接寫出答案)
查看答案和解析>>
科目: 來源: 題型:
【題目】某文具店某幾種型號的計算器每只進價 12 元、售價 20 元,多買優(yōu)惠, 優(yōu)惠方法是:凡是一次買 10 只以上的,每多買一只,所買的全部計算器每只就 降價 0.1 元,例如:某人買 18 只計算器,于是每只降價 0.1×(18-10)=0.8(元), 因此所買的 18 只計算器都按每只 19.2 元的價格購買,但是每只計算器的最低售 價為 16 元.
(1)求一次至少購買多少只計算器,才能以最低售價購買? (2)寫出該文具店一次銷售 x(x>10)只時,所獲利潤 y(元)與 x(只)之間的函數(shù)關(guān)系 式,并寫出自變量 x 的取值范圍;
(3)一天,甲顧客購買了 46 只,乙顧客購買了 50 只,店主發(fā)現(xiàn)賣 46 只賺的錢反 而比賣 50 只賺的錢多,請你說明發(fā)生這一現(xiàn)象的原因;當 10<x≤50 時,為了 獲得最大利潤,店家一次應(yīng)賣多少只?這時的售價是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com