相關習題
 0  358705  358713  358719  358723  358729  358731  358735  358741  358743  358749  358755  358759  358761  358765  358771  358773  358779  358783  358785  358789  358791  358795  358797  358799  358800  358801  358803  358804  358805  358807  358809  358813  358815  358819  358821  358825  358831  358833  358839  358843  358845  358849  358855  358861  358863  358869  358873  358875  358881  358885  358891  358899  366461 

科目: 來源: 題型:

【題目】今年3月,某集團隨機抽取所屬的m家商業(yè)連鎖店進行評估,將各連鎖店按照評估成績分成了A、B、C、D四個等級,繪制了如圖尚不完整的統(tǒng)計圖表.

評估成績

評定等級

頻數(shù)

A

2

B

b

C

15

D

6

根據(jù)以上信息解答下列問題:

(1)m,b的值;

(2)在扇形統(tǒng)計圖中,求B等級所在扇形的圓心角的大;

(3)從評估成績不少于80分的連鎖店中,任選2家介紹營銷經驗,用樹狀圖或列表法求其中至少有一家是A等級的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在中,是邊上兩點,且所在的直線垂直平分線段,平分,,則的長為________

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在矩形ABCD中,EAD邊的中點,,垂足為點F,連接DF,分析下列四個結論:;;其中正確的結論有______

查看答案和解析>>

科目: 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,則下列結論:①ac>0;a-b+c<0;時,;,其中錯誤的結論有  

A. ②③ B. ②④ C. ①③ D. ①④

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,AEABAEAB,BCCDBCCD,請按圖中所標注的數(shù)據(jù),計算圖中實線所圍成的面積S是(

A.50B.62C.65D.68

查看答案和解析>>

科目: 來源: 題型:

【題目】已知:如圖1,OM是∠AOB的平分線,點COM上,OC5,且點COA的距離為3.過點CCDOACEOB,垂足分別為D、E,易得到結論:OD+OE_________;

1)把圖1中的∠DCE繞點C旋轉,當CDOA不垂直時(如圖2),上述結論是否成立?并說明理由;

2)把圖1中的∠DCE繞點C旋轉,當CDOA的反向延長線相交于點D時:

①請在圖3中畫出圖形;

②上述結論還成立嗎?若成立,請給出證明;若不成立,請直接寫出線段OD、OE之間的數(shù)量關系,不需證明.

查看答案和解析>>

科目: 來源: 題型:

【題目】如果一條拋物線軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“拋物線三角形”.

(1)“拋物線三角形”一定是 三角形;

(2)若拋物線的“拋物線三角形”是等腰直角三角形,求的值;

(3)如圖,△是拋物線的“拋物線三角形”,是否存在以原點為對稱中心的矩形?若存在,求出過三點的拋物線的表達式;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖1,在RtABC中,∠A=90°,AB=AC,點D,E分別在邊ABAC上,AD=AE,連接DC,點M,P,N分別為DEDC,BC的中點.

(1)觀察猜想

1中,線段PMPN的數(shù)量關系是 ,位置關系是 ;

(2)探究證明

ADE繞點A逆時針方向旋轉到圖2的位置,連接MN,BD,CE,判斷PMN的形狀,并說明理由;

(3)拓展延伸

ADE繞點A在平面內自由旋轉,若AD=4,AB=10,請直接寫出PMN面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】節(jié)能又環(huán)保的油電混合動力汽車,既可以用油做動力行駛,也可以用電做動力行駛,某品牌油電混合動力汽車從甲地行駛到乙地,若完全用油做動力行駛,則費用為80元;若完全用電做動力行駛,則費用為30元,已知汽車行駛中每千米用油費用比用電費用多0.5元.

(1)求:汽車行駛中每千米用電費用是多少元?甲、乙兩地的距離是多少千米?

(2)若汽車從甲地到乙地采用油電混合動力行駛,且所需費用不超過50元,則至少需要用電行駛多少千米?

查看答案和解析>>

科目: 來源: 題型:

【題目】閱讀材料:常用的分解因式方法有提公因式、公式法等,但有的多項式只有上述方法就無法分解,如x24y2+2x4y,細心觀察這個式子會發(fā)現(xiàn),前兩項符合平方差公式,后兩項可提取公因式,前后兩部分分別分解因式后會產生公因式,然后提取公因式就可以完成整個式子的分解因式,過程為:

x24y2+2x4y

=(x24y2+2x4y

=(x+2y)(x2y+2x2y

=(x2y)(x+2y+2

這種分解因式的方法叫分組分解法,利用這種方法解決下列問題:

1)分解因式:x26xy+9y23x+9y

2)△ABC的三邊ab,c滿足a2b2ac+bc0,判斷△ABC的形狀.

查看答案和解析>>

同步練習冊答案