科目: 來源: 題型:
【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC
重合,點B落在點F處,折痕為AE,且EF=3,則AB的長為( )
A. 3 B. 4
C. 5 D. 6
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC 中,AB=BC=2,∠ABC=120°,將△ABC 繞點 B 順時針旋轉(zhuǎn)角α(0°<α<90°)得△A1BC1,A1B 交 AC 于點 E,A1C1 分別交 AC、BC 于 D、F 兩點.
(1)如圖 1,觀察并猜想,在旋轉(zhuǎn)過程中,線段 EA1 與 FC 有怎樣的數(shù)量關(guān)系? 并證明你的結(jié)論;
(2)如圖 2,當(dāng)α=30°時,試判斷四邊形 BC1DA 的形狀,并說明理由;
(3)在(2)的情況下,求 ED 的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】綜合與實踐
如圖,為等腰直角三角形,,點為斜邊的中點,是直角三角形,.保持不動,將沿射線向左平移,平移過程中點始終在射線上,且保持直線于點,直線于點.
(1)如圖1,當(dāng)點與點重合時,與的數(shù)量關(guān)系是__________.
(2)如圖2,當(dāng)點在線段上時,猜想與有怎樣的數(shù)量關(guān)系與位置關(guān)系,并對你的猜想結(jié)果給予證明;
(3)如圖3,當(dāng)點在的延長線上時,連接,若,則的長為__________.
查看答案和解析>>
科目: 來源: 題型:
【題目】請閱讀材料,并完成相應(yīng)的任務(wù).
阿波羅尼奧斯(約公元前262~190年),古希臘數(shù)學(xué)家,與歐幾里得、阿基米德齊名.他的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,可以說是代表了希臘幾何的最高水平.阿波羅尼奧斯定理,是歐氏幾何的定理,表述三角形三邊和中線的長度關(guān)系,即三角形任意兩邊的平方和等于第三邊的一半與該邊中線的平方和的2倍.
(1)下面是該結(jié)論的部分證明過程,請在框內(nèi)將其補充完整;
已知:如圖1所示,在銳角中,為中線..
求證:
證明:過點作于點
為中線
設(shè),,
,
在中,
在中,__________
在中,__________
__________
(2)請直接利用阿波羅尼奧斯定理解決下面問題:
如圖2,已知點為矩形內(nèi)任一點,
求證:(提示:連接、交于點,連接)
查看答案和解析>>
科目: 來源: 題型:
【題目】某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量y(萬件)與銷售單價x(元)之間的關(guān)系可以近似地看作一次函數(shù)(利潤=售價﹣制造成本).
(1)寫出每月的利潤w(萬元)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價為多少元時,廠商每月能獲得350萬元的利潤?
(3)當(dāng)銷售單價為多少元時,廠商每月能獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】為了讓“兩會”精神深入青年學(xué)生,增強學(xué)子們的歷史使命和社會責(zé)任感,某高校黨委舉辦了“奮力奔跑同心追夢”兩會主題知識競答活動,文學(xué)社團為選派優(yōu)秀同學(xué)參加學(xué)校競答活動,提前對甲、乙兩位同學(xué)進行了6次測驗:
①收集數(shù)據(jù):分別記錄甲、乙兩位同學(xué)6次測驗成績(單位:分)
甲 | 82 | 78 | 82 | 83 | 86 | 93 |
乙 | 83 | 81 | 84 | 86 | 83 | 87 |
②整理數(shù)據(jù):列表格整理兩位同學(xué)的測驗成績(單位:分)
1 | 2 | 3 | 4 | 5 | 6 | |
甲 | 82 | 78 | 82 | 83 | 86 | 93 |
乙 | 83 | 81 | 84 | 86 | 83 | 87 |
③描述數(shù)據(jù):根據(jù)甲、乙兩位同學(xué)的成績繪制折線統(tǒng)計圖
④分析數(shù)據(jù):兩組成績的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表:
同學(xué) | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 84 | 82.5 | __________ | 16.3 |
乙 | 84 | 83.5 | 83 | __________ |
得出結(jié)論:結(jié)合上述統(tǒng)計過程,回答下列問題:
(1)補全④中表格;
(2)甲、乙兩名同學(xué)中,_______(填甲或乙)的成績更穩(wěn)定,理由是______________________
(3)如果由你來選擇一名同學(xué)參加學(xué)校的競答活動,你會選擇__________(填甲或乙),理由是___________
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是弦,OD⊥AC于點D,過點A作⊙O的切線AP,AP與OD的延長線交于點P,連接PC、BC.
【1】猜想:線段OD與BC有何數(shù)量和位置關(guān)系,并證明你的結(jié)論.
【2】求證:PC是⊙O的切線
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,如圖,BC是以線段AB為直徑的⊙O的切線,AC交⊙O于點D,過點D作弦DE⊥AB,垂足為點F,連接BD、BE.
(1)仔細觀察圖形并寫出三個不同類型的正確結(jié)論:
① ,② ,③ ,(不添加其它字母和輔助線,不必證明);
(2)若∠A=30°,CD=2,求⊙O的半徑r.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下列例題的解答過程:解方程:3(x﹣2)2+7(x﹣2)+4=0.
解:設(shè) x﹣2=y,則原方程化為:3y2+7y+4=0.
∵a=3,b=7,c=4,∴b2﹣4ac=72﹣4×3×4=1.
∴y= =.∴y1=﹣1,y2=﹣ .
當(dāng) y=﹣1 時,x﹣2=﹣1,∴x=1;
當(dāng) y=﹣時,x﹣2=﹣,∴x= .
∴原方程的解為:x1=1,x2=.
(1)請仿照上面的例題解一元二次方程:2(x﹣3)2﹣5(x﹣3)﹣7=0;
(2)若(a2+b2)(a2+b2﹣2)=3,求代數(shù)式 a2+b2的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com