【題目】已知,如圖,BC是以線段AB為直徑的⊙O的切線,AC交⊙O于點(diǎn)D,過點(diǎn)D作弦DE⊥AB,垂足為點(diǎn)F,連接BD、BE.
(1)仔細(xì)觀察圖形并寫出三個不同類型的正確結(jié)論:
① ,② ,③ ,(不添加其它字母和輔助線,不必證明);
(2)若∠A=30°,CD=2,求⊙O的半徑r.
【答案】(1)結(jié)論:DF=FE,BD=BE,△BDF≌△BEF,∠A=∠E等;(2)
【解析】
(1)結(jié)論可以有:①DF=FE,BD=BE,②△BDF≌△BEF,③∠A=∠E,∠BDF=∠BEF④BC⊥AB,AD⊥BD,DE∥BC等;由BC是 O的切線,DF⊥AB,得∠AFD=∠CBA=90°;根據(jù)DE∥BC和垂徑定理知,弧BD=弧BE,DF=FE,BD=BE,由等邊對等角得∠E=∠EDB;再由圓周角定理得∠A=∠E,可證△BDF≌△BEF,△BDF∽△BAD;等.
(2)當(dāng)∠A=30°時,BD=AB=r,∠C=60°,再根據(jù)Rt△BCD中,tan60°可求得r=2 .
解:(1)結(jié)論:DF=FE,BD=BE,△BDF≌△BEF,∠A=∠E等;
理由:∵AB是直徑,DE⊥AB,
∴DF=EF,弧BD=弧BE,
∴BD=BE,
∴Rt△BDF≌Rt△BEF(HL),
根據(jù)圓周角定理可知:∠A=∠E.
故答案為DF=EF,BD=BE,Rt△BDF≌Rt△BEF;
(2)∵AB是⊙O的直徑,
∴∠ADB=90°,
又∵∠A=30°,
∴BD=ABsinA=ABsin30°= AB=r;
又∵BC是⊙O的切線,
∴∠CBA=90°,
∴∠C=60°;
在Rt△BCD中,
CD=2,
∴ =tan60°,
∴r=2 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx﹣2與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且A(﹣1,0).
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)判斷△ABC的形狀,證明你的結(jié)論;
(3)點(diǎn)M是x軸上的一個動點(diǎn),當(dāng)△DCM的周長最小時,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AC平分∠DAB,CE⊥AB于E,AB=AD+2BE,則下列結(jié)論:①AB+AD=2AE;②∠DAB+∠DCB=180°;③CD=CB;④S△ACE﹣2S△BCE=S△ADC;其中正確結(jié)論的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題:三角形的內(nèi)心是三角形內(nèi)切圓的圓心;三角形的外心是三角形三邊垂直平分線的交點(diǎn);平分弦的直徑垂直于這條弦;平面上任意三點(diǎn)確定一個圓圓內(nèi)接四邊形的對角互補(bǔ)其中,真命題有().
A. 兩個 B. 三個 C. 四個 D. 五個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)的圖象,下列結(jié)論錯誤的是( )
A.圖象經(jīng)過一、二、四象限
B.與軸的交點(diǎn)坐標(biāo)為
C.隨的增大而減小
D.圖象與兩坐標(biāo)軸相交所形成的直角三角形的面積為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請閱讀材料,并完成相應(yīng)的任務(wù).
阿波羅尼奧斯(約公元前262~190年),古希臘數(shù)學(xué)家,與歐幾里得、阿基米德齊名.他的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,可以說是代表了希臘幾何的最高水平.阿波羅尼奧斯定理,是歐氏幾何的定理,表述三角形三邊和中線的長度關(guān)系,即三角形任意兩邊的平方和等于第三邊的一半與該邊中線的平方和的2倍.
(1)下面是該結(jié)論的部分證明過程,請在框內(nèi)將其補(bǔ)充完整;
已知:如圖1所示,在銳角中,為中線..
求證:
證明:過點(diǎn)作于點(diǎn)
為中線
設(shè),,
,
在中,
在中,__________
在中,__________
__________
(2)請直接利用阿波羅尼奧斯定理解決下面問題:
如圖2,已知點(diǎn)為矩形內(nèi)任一點(diǎn),
求證:(提示:連接、交于點(diǎn),連接)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測得A,C之間的距離為6cm,點(diǎn)B,D之間的距離為8cm,則線段AB的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店準(zhǔn)備購進(jìn)一批電冰箱和空調(diào),每臺電冰箱的進(jìn)價比每臺空調(diào)的進(jìn)價多400元,商店用8000元購進(jìn)電冰箱的數(shù)量與用6400元購進(jìn)空調(diào)的數(shù)量相等.
(1)求每臺電冰箱與空調(diào)的進(jìn)價分別是多少?
(2)已知電冰箱的銷售價為每臺2100元,空調(diào)的銷售價為每臺1750元.若商店準(zhǔn)備購進(jìn)這兩種家電共100臺,其中購進(jìn)電冰箱x臺(33≤x≤40),那么該商店要獲得最大利潤應(yīng)如何進(jìn)貨?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com