科目: 來源: 題型:
【題目】“十三五”以來,山西省共解決372個村、35.8萬農(nóng)村人口的飲水型氟超標問題,讓農(nóng)村群眾真正喝上干凈水、放心水、安全水.某公司抓住商機,根據(jù)市場需求代理,兩種型號的凈水器,已知每臺型凈水器比每臺型凈水器進價多200元,用5萬元購進型凈水器與用4.5萬元購進型凈水器的數(shù)量相等.
(1)求每臺型,型凈水器的進價各是多少元?
(2)該公司計劃購進,兩種型號的凈水器共55臺進行試銷,其中型凈水器為臺,購買兩種凈水器的總資金不超過10.8萬元.則最多可購進型號凈水器多少臺?
查看答案和解析>>
科目: 來源: 題型:
【題目】某社區(qū)組織了以“奔向幸福,‘毽’步如飛”為主題的踢毽子比賽活動,初賽結(jié)束后有甲、乙兩個代表隊進入決賽,已知每隊有5名隊員,按團體總數(shù)排列名次,在規(guī)定時間內(nèi)每人踢100個以上(含100)為優(yōu)秀.下表是兩隊各隊員的比賽成績.
1 號 | 2 號 | 3 號 | 4 號 | 5 號 | 總數(shù) | |
甲隊 | 103 | 102 | 98 | 100 | 97 | 500 |
乙隊 | 97 | 99 | 100 | 96 | 108 | 500 |
經(jīng)統(tǒng)計發(fā)現(xiàn)兩隊5名隊員踢毽子的總個數(shù)相等,按照比賽規(guī)則,兩隊獲得并列第一.學習統(tǒng)計知識后,我們可以通過考查數(shù)據(jù)中的其它信息作為參考,進行綜合評定:
(1)甲、乙兩隊的優(yōu)秀率分別為 ;
(2)甲隊比賽數(shù)據(jù)的中位數(shù)為 個;乙隊比賽數(shù)據(jù)的中位數(shù)為 個;
(3)分別計算甲、乙兩隊比賽數(shù)據(jù)的方差;
(4)根據(jù)以上信息,你認為綜合評定哪一個隊的成績好?簡述理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀理解,并解決問題:
“整體思想”是中學數(shù)學中的一種重要思想,貫穿于中學數(shù)學的全過程,比如整體代入,整體換元,整體約減,整體求和,整體構(gòu)造,…,有些問題若從局部求解,采取各個擊破的方式,很難解決,而從全局著眼,整體思考,會使問題化繁為簡,化難為易,復雜問題也能迎刃而解.
例:當代數(shù)式的值為7時,求代數(shù)式的值.
解:因為,所以.
所以.
以上方法是典型的整體代入法.
請根據(jù)閱讀材料,解決下列問題:
(1)已知,求的值.
(2)我們知道方程的解是,現(xiàn)給出另一個方程,則它的解是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,已知點A,對點A作如下變換:
第一步:作點A關于x軸的對稱點A1;第二步:以O為位似中心,作線段OA1的位似圖形OA2,且相似比=q,則稱A2是點A的對稱位似點.
(1)若A(2,3),q=2,直接寫出點A的對稱位似點的坐標;
(2)已知直線l:y=kx-2,拋物線C:y=-x2+mx-2(m>0).點N(,2k-2)在直線l上.
①當k=時,判斷E(1,-1)是否是點N的對稱位似點,請說明理由;
②若直線l與拋物線C交于點M(x1,y1)(x1≠0),且點M不是拋物線的頂點,則點M的對稱位似點是否可能仍在拋物線C上?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某村啟動“脫貧攻堅”項目,根據(jù)當?shù)氐牡乩項l件,要在一座高為1000m的上種植一種經(jīng)濟作物.農(nóng)業(yè)技術人員在種植前進行了主要相關因素的調(diào)查統(tǒng)計,結(jié)果如下:
①這座山的山腳下溫度約為22°C,山高h(單位:m)每增加100m,溫度T(單位:°C)下降約0.5°C;
②該作物的種植成活率p受溫度T影響,且在19°C時達到最大.大致如表:
溫度T°C | 21 | 20.5 | 20 | 19.5 | 19 | 18.5 | 18 | 17.5 |
種植成活率p | 90% | 92% | 94% | 96% | 98% | 96% | 94% | 92% |
③該作物在這座山上的種植量w受山高h影響,大致如圖1:
(1)求T關于h的函數(shù)解析式,并求T的最小值;
(2)若要求該作物種植成活率p不低于92%,根據(jù)上述統(tǒng)計結(jié)果,山高h為多少米時該作物的成活量最大?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在四邊形ABCD中,AB∥CD,∠ABC=60°,AB=BC=4,CD=3.
(1)如圖1,求△BCD的面積;
(2)如圖2,M是CD邊上一點,將線段BM繞點B逆時針旋轉(zhuǎn)60°,可得線段BN,過點N作NQ⊥BC,垂足為Q,設NQ=n,BQ=m,求n關于m的函數(shù)解析式.(自變量m的取值范圍只需直接寫出)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知△ABC及其外接圓,∠C=90°,AC=10.
(1)若該圓的半徑為5,求∠A的度數(shù);
(2)點M在AB邊上(AM>BM),連接CM并延長交該圓于點D,連接DB,過點C作CE垂直DB的延長線于E.若BE=3,CE=4,試判斷AB與CD是否互相垂直,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某路段上有A,B兩處相距近200m且未設紅綠燈的斑馬線.為使交通高峰期該路段車輛與行人的通行更有序,交通部門打算在汽車平均停留時間較長的一處斑馬線上放置移動紅綠燈.圖1,圖2分別是交通高峰期來往車輛在A,B斑馬線前停留時間的抽樣統(tǒng)計圖.根據(jù)統(tǒng)計圖解決下列問題:
(1)若某日交通高峰期共有350輛車經(jīng)過A斑馬線,請估計該日停留時間為10s~12s的車輛數(shù),以及這些停留時間為10s~12s的車輛的平均停留時間;(直接寫出答案)
(2)移動紅綠燈放置在哪一處斑馬線上較為合適?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在正方形ABCD中,E是CD邊上的點,過點E作EF⊥BD于F.
(1)尺規(guī)作圖:在圖中求作點E,使得EF=EC;(保留作圖痕跡,不寫作法)
(2)在(1)的條件下,連接FC,求∠BCF的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,直線y=x與雙曲線y=(k>0,x>0)交于點A.過點A作AC⊥x軸于點C,過雙曲線上另一點B作BD⊥x軸于點D,作BE⊥AC于點E,連接AB.若OD=3OC,則tan∠ABE=______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com