科目: 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC與BD交于點O.過點C作BD的平行線,過點D作AC的平行線,兩直線相交于點E.
(1)求證:四邊形OCED是矩形;
(2)若CE=1,DE=2,ABCD的面積是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】3月5日是學(xué)雷鋒日,也是中國青年志愿者服務(wù)日.今年3月5日,某中學(xué)組織全體學(xué)生參加了“青年志愿者”活動,活動分為“打掃街道(記為A)”“去敬老院服務(wù)(記為B)”“到社區(qū)文藝演出(記為C)”三項.
(1)八年級計劃在3月5日這天隨機完成“青年志愿者”活動中的一項,求八年級完成的恰好是“去敬老院服務(wù)”的概率;
(2)九年級計劃在3月5日這天隨機完成“青年志愿者”活動中的兩項,請用列表或畫樹狀圖法求九年級完成的恰好是“打掃街道”和“去敬老院服務(wù)”的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=8,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點B′處,當(dāng)△CEB′為直角三角形時,BE的長為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】2019年的北京世園會在北京延慶區(qū)成功舉辦,這是我國舉辦的級別最高、規(guī)模最大的國際性博覽會,吸引了各地的游客前來參觀.會展期間延慶某賓館有50間房供游客居住,當(dāng)每間房每天定價為380元時,賓館會住滿;當(dāng)每間房每天定價每增加20元時,就會空閑一間房,如果有游客居住,賓館需對居住的每間房每天支出30元的費用,當(dāng)房價定為多少元時,賓館當(dāng)天的利潤為20250元?設(shè)房價比定價380元增加x元,則有( )
A.(x+380)(50﹣)﹣50×30=20250
B.(380+x﹣30)(50﹣)=20250
C.x(50﹣)﹣50×30=20250
D.(x﹣30)(50﹣)=20250
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形中,,,動點P以的速度從A點出發(fā),沿向C點移動,同時動點Q以的速度從點C出發(fā),沿向點B移動,設(shè)P、Q兩點移動的時間為t秒.
(1)t為多少時,以P、Q、C為頂點的三角形與相似?
(2)在P、Q兩點移動過程中,四邊形與的面積能否相等?若能,求出此時t的值;若不能,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象相交于A(m,4)、B(2,﹣6)兩點,過A作AC⊥x軸交于點C,連接OA.
(1)分別求出一次函數(shù)與反比例函數(shù)的表達式;
(2)若直線AB上有一點M,連接MC,且滿足S△AMC=3S△AOC,求點M的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,笑笑和爸爸想要測量直立在地面上的建筑物OP與廣告牌AB的高度.首先,笑笑站在離廣告牌B處4米的D處看到廣告牌AB的頂端A、建筑物OP的頂端O一條直線上;此時,在陽光下,爸爸站在N處,他的影長NE=2.1米,同一時刻,測得建筑物OP的影長為PG=28米,已知建筑物OP與廣告牌AB之間的水平距離為11米,笑笑的眼睛到地面的距離CD=1.5米,爸爸的身高MN=1.8米.
(1)請你畫出表示建筑物OP在陽光下的影子PG;
(2)求:①建筑物OP的高度;
②廣告牌AB的高度.
查看答案和解析>>
科目: 來源: 題型:
【題目】盒中有若干枚黑球和白球,這些球除顏色外無其他差別,現(xiàn)讓學(xué)生進行摸球試驗:每次摸出一個球,記下顏色后放回搖勻,重復(fù)進行這樣的試驗得到以下數(shù)據(jù):
摸棋的次數(shù)n | 100 | 200 | 300 | 500 | 800 | 1000 |
摸到黑棋的次數(shù)m | 38 | 79 | 121 | 196 | 322 | 398 |
摸到黑棋的頻率(精確到0.001) | 0.380 | 0.395 | 0.403 | 0.392 | 0.403 | 0.398 |
(1)根據(jù)表中數(shù)據(jù)估計,從盒中摸出一個球是白球的概率是_____(精確到0.01);
(2)若盒中黑球與白球共有5枚,某同學(xué)連續(xù)不放回地摸出兩個球,用樹狀圖或表格計算這兩個球顏色不同的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】一塊材料的形狀是銳角三角形ABC,邊BC=120mm,高4D=80mm, .把它加工成正方形零件如圖1,使正方形的一邊在BC上,其余兩個頂點分別在AB,AC上.
(1)求證:;
(2)求這個正方形零件的邊長;
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知在正方形ABCD中、點E是BC邊上一點,F為AB延長線上一點,且BE=BF,連接AE、EF、CF.
(1)若∠BAE=18°,求∠EFC的度數(shù);
(2)求證:AE⊥CF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com